Generation and diversification of recombinant monoclonal antibodies

  1. Keith F DeLuca
  2. Jeanne E Mick
  3. Amy Hodges Ide
  4. Wanessa C Lima
  5. Lori Sherman
  6. Kristin L Schaller
  7. Steven M Anderson
  8. Ning Zhao
  9. Timothy J Stasevich
  10. Dileep Varma
  11. Jakob Nilsson
  12. Jennifer G DeLuca  Is a corresponding author
  1. Colorado State University, United States
  2. University of Geneva, Switzerland
  3. University of Colorado Anschutz Medical Campus, United States
  4. Northwestern University, United States
  5. University of Copenhagen, Germany

Abstract

Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.

Data availability

All data generated during this study are included in the manuscript. We will also deposit the plasmid text files and maps on our institutional repository and AddGene.

Article and author information

Author details

  1. Keith F DeLuca

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  2. Jeanne E Mick

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  3. Amy Hodges Ide

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  4. Wanessa C Lima

    Geneva Antibody Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  5. Lori Sherman

    CU Cancer Center Cell Technologies Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    No competing interests declared.
  6. Kristin L Schaller

    Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    No competing interests declared.
  7. Steven M Anderson

    Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    No competing interests declared.
  8. Ning Zhao

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7092-6229
  9. Timothy J Stasevich

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  10. Dileep Varma

    Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  11. Jakob Nilsson

    The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4100-1125
  12. Jennifer G DeLuca

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    For correspondence
    jdeluca@colostate.edu
    Competing interests
    Jennifer G DeLuca, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3598-1721

Funding

National Institute of General Medical Sciences (R35GM130365)

  • Jennifer G DeLuca

National Institute of General Medical Sciences (MIRA R35GM119728)

  • Timothy J Stasevich

National Institute of General Medical Sciences (K99GM141453)

  • Ning Zhao

National Institute of General Medical Sciences (R01GM135391)

  • Dileep Varma

National Science Foundation (MCB-1845761)

  • Timothy J Stasevich

National Cancer Institute (P30CA046934)

  • Lori Sherman
  • Steven M Anderson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Silke Hauf, Virginia Tech, United States

Version history

  1. Received: July 10, 2021
  2. Preprint posted: September 11, 2021 (view preprint)
  3. Accepted: December 20, 2021
  4. Accepted Manuscript published: December 31, 2021 (version 1)
  5. Accepted Manuscript updated: January 7, 2022 (version 2)
  6. Version of Record published: January 17, 2022 (version 3)

Copyright

© 2021, DeLuca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,556
    Page views
  • 892
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keith F DeLuca
  2. Jeanne E Mick
  3. Amy Hodges Ide
  4. Wanessa C Lima
  5. Lori Sherman
  6. Kristin L Schaller
  7. Steven M Anderson
  8. Ning Zhao
  9. Timothy J Stasevich
  10. Dileep Varma
  11. Jakob Nilsson
  12. Jennifer G DeLuca
(2021)
Generation and diversification of recombinant monoclonal antibodies
eLife 10:e72093.
https://doi.org/10.7554/eLife.72093

Share this article

https://doi.org/10.7554/eLife.72093

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.