Generation and diversification of recombinant monoclonal antibodies

  1. Keith F DeLuca
  2. Jeanne E Mick
  3. Amy Hodges Ide
  4. Wanessa C Lima
  5. Lori Sherman
  6. Kristin L Schaller
  7. Steven M Anderson
  8. Ning Zhao
  9. Timothy J Stasevich
  10. Dileep Varma
  11. Jakob Nilsson
  12. Jennifer G DeLuca  Is a corresponding author
  1. Colorado State University, United States
  2. University of Geneva, Switzerland
  3. University of Colorado Anschutz Medical Campus, United States
  4. Northwestern University, United States
  5. University of Copenhagen, Denmark

Abstract

Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.

Data availability

All data generated during this study are included in the manuscript. We will also deposit the plasmid text files and maps on our institutional repository and AddGene.

Article and author information

Author details

  1. Keith F DeLuca

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  2. Jeanne E Mick

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  3. Amy Hodges Ide

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  4. Wanessa C Lima

    Geneva Antibody Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  5. Lori Sherman

    CU Cancer Center Cell Technologies Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    No competing interests declared.
  6. Kristin L Schaller

    Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    No competing interests declared.
  7. Steven M Anderson

    Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    No competing interests declared.
  8. Ning Zhao

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7092-6229
  9. Timothy J Stasevich

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  10. Dileep Varma

    Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  11. Jakob Nilsson

    The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4100-1125
  12. Jennifer G DeLuca

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    For correspondence
    jdeluca@colostate.edu
    Competing interests
    Jennifer G DeLuca, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3598-1721

Funding

National Institute of General Medical Sciences (R35GM130365)

  • Jennifer G DeLuca

National Institute of General Medical Sciences (MIRA R35GM119728)

  • Timothy J Stasevich

National Institute of General Medical Sciences (K99GM141453)

  • Ning Zhao

National Institute of General Medical Sciences (R01GM135391)

  • Dileep Varma

National Science Foundation (MCB-1845761)

  • Timothy J Stasevich

National Cancer Institute (P30CA046934)

  • Lori Sherman
  • Steven M Anderson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Silke Hauf, Virginia Tech, United States

Version history

  1. Received: July 10, 2021
  2. Preprint posted: September 11, 2021 (view preprint)
  3. Accepted: December 20, 2021
  4. Accepted Manuscript published: December 31, 2021 (version 1)
  5. Accepted Manuscript updated: January 7, 2022 (version 2)
  6. Version of Record published: January 17, 2022 (version 3)

Copyright

© 2021, DeLuca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,784
    views
  • 928
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keith F DeLuca
  2. Jeanne E Mick
  3. Amy Hodges Ide
  4. Wanessa C Lima
  5. Lori Sherman
  6. Kristin L Schaller
  7. Steven M Anderson
  8. Ning Zhao
  9. Timothy J Stasevich
  10. Dileep Varma
  11. Jakob Nilsson
  12. Jennifer G DeLuca
(2021)
Generation and diversification of recombinant monoclonal antibodies
eLife 10:e72093.
https://doi.org/10.7554/eLife.72093

Share this article

https://doi.org/10.7554/eLife.72093

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Roberto Efraín Díaz, Andrew K Ecker ... James S Fraser
    Research Article

    Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high-resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marian Brenner, Christoph Zink ... Antje Gohla
    Research Article

    Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5’-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.