A coupled mechano-biochemical model for cell polarity guided anisotropic root growth

  1. Marco Marconi
  2. Marcal Gallemi
  3. Eva Benkova
  4. Krzysztof Wabnik  Is a corresponding author
  1. CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Spain
  2. Institute of Science and Technology (IST), Austria

Abstract

Plants develop new organs to adjust their bodies to dynamic changes in the environment. How independent organs achieve anisotropic shapes and polarities is poorly understood. To address this question, we constructed a mechano-biochemical model for Arabidopsis root meristem growth that integrates biologically plausible principles. Computer model simulations demonstrate how differential growth of neighboring tissues results in the initial symmetry-breaking leading to anisotropic root growth. Furthermore, the root growth feeds back on a polar transport network of the growth regulator auxin. Model, predictions are in close agreement with in vivo patterns of anisotropic growth, auxin distribution, and cell polarity, as well as several root phenotypes caused by chemical, mechanical, or genetic perturbations. Our study demonstrates that the combination of tissue mechanics and polar auxin transport organizes anisotropic root growth and cell polarities during organ outgrowth. Therefore, a mobile auxin signal transported through immobile cells drives polarity and growth mechanics to coordinate complex organ development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The source data for Figure 1D, Figure 2H-K, Figure 2-figure supplement 4, Figure 2-figure supplement 5H-K, Figure 3E,F, Figure 4C, Figure 4-figure supplement 1, Figure 5A-E and Figure 5-figure supplement 1A-C are provided in corresponding Source Data Files.The computer model code and PBD implementation can be found here: https://github.com/PDLABCBGP/ROOTMODEL-PBDWe received a copy of MorphoDynamX from Dr. Richard S. Smith, JIC, UK. To request MorphoDynamX source code please contact Dr. Smith directly via email Richard.Smith@jic.ac.uk

Article and author information

Author details

  1. Marco Marconi

    CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3457-1384
  2. Marcal Gallemi

    Institute of Science and Technology (IST), Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Eva Benkova

    Institute of Science and Technology (IST), Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Krzysztof Wabnik

    CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
    For correspondence
    k.wabnik@upm.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7263-0560

Funding

Comunidad de Madrid (2017-T1/BIO-5654)

  • Krzysztof Wabnik

Ministerio de Ciencia, Innovación y Universidades (PGC2018-093387-A-I00)

  • Krzysztof Wabnik

Ministerio de Ciencia, Innovación y Universidades (SEV-2016-0672 (2017-2021))

  • Marco Marconi
  • Krzysztof Wabnik

IST Interdisciplinary Project (IC1022IPC03)

  • Marcal Gallemi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Marconi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,530
    views
  • 357
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marco Marconi
  2. Marcal Gallemi
  3. Eva Benkova
  4. Krzysztof Wabnik
(2021)
A coupled mechano-biochemical model for cell polarity guided anisotropic root growth
eLife 10:e72132.
https://doi.org/10.7554/eLife.72132

Share this article

https://doi.org/10.7554/eLife.72132

Further reading

    1. Computational and Systems Biology
    Matthew Millard, David W Franklin, Walter Herzog
    Research Article

    The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kara Schmidlin, Sam Apodaca ... Kerry Geiler-Samerotte
    Research Article

    There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.