Principles of mRNA targeting via the Arabidopsis m6A-binding protein ECT2

  1. Laura Arribas-Hernández  Is a corresponding author
  2. Sarah Rennie
  3. Tino Köster
  4. Carlotta Porcelli
  5. Martin Lewinski
  6. Prof. Dr. Dorothee Staiger  Is a corresponding author
  7. Robin Andersson  Is a corresponding author
  8. Peter Brodersen  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. University of Bielefeld, Germany

Abstract

Specific recognition of N6-methyladenosine (m6A) in mRNA by RNA-binding proteins containing a YT521-B homology (YTH) domain is important in eukaryotic gene regulation. The Arabidopsis YTH-domain protein ECT2 is thought to bind to mRNA at URU(m6A)Y sites, yet RR(m6A)CH is the canonical m6A consensus site in all eukaryotes and ECT2 functions require m6A binding activity. Here, we apply iCLIP (individual-nucleotide resolution cross-linking and immunoprecipitation) and HyperTRIBE (targets of RNA-binding proteins identified by editing) to define high-quality target sets of ECT2, and analyze the patterns of enriched sequence motifs around ECT2 crosslink sites. Our analyses show that ECT2 does in fact bind to RR(m6A)CH. Pyrimidine-rich motifs are enriched around, but not at m6A-sites, reflecting a preference for N6-adenosine methylation of RRACH/GGAU islands in pyrimidine-rich regions. Such motifs, particularly oligo-U and UNUNU upstream of m6A sites, are also implicated in ECT2 binding via its intrinsically disordered region (IDR). Finally, URUAY-type motifs are enriched at ECT2 crosslink sites, but their distinct properties suggest function as sites of competition between binding of ECT2 and as yet unidentified RNA-binding proteins. Our study provides coherence between genetic and molecular studies of m6A-YTH function in plants, and reveals new insight into the mode of RNA recognition by YTH-domain-containing proteins.

Data availability

All sequencing data (iCLIP-seq, HyperTRIBE, mRNA-seq, small RNA-seq) have been deposited in the European Nucleotide Archive under accession code PRJEB44359.All code is available at GitHubhttps://github.com/sarah-ku/targets_arabidopsis

The following data sets were generated

Article and author information

Author details

  1. Laura Arribas-Hernández

    University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    laura.arribas@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah Rennie

    University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Tino Köster

    University of Bielefeld, Bielefeld, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Carlotta Porcelli

    Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4675-4898
  5. Martin Lewinski

    University of Bielefeld, Bielefeld, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Prof. Dr. Dorothee Staiger

    University of Bielefeld, Bielefeld, Germany
    For correspondence
    dorothee.staiger@uni-bielefeld.de
    Competing interests
    The authors declare that no competing interests exist.
  7. Robin Andersson

    University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    robin@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1516-879X
  8. Peter Brodersen

    University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    PBrodersen@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1083-1150

Funding

H2020 European Research Council (ERC-2016-COG 726417)

  • Peter Brodersen

Independent Research Fund Denmark (9040-00409B)

  • Peter Brodersen

European Molecular Biology Organization (STF 7614)

  • Laura Arribas-Hernández

Deutsche Forschungsgemeinschaft (STA653/14-1)

  • Prof. Dr. Dorothee Staiger

H2020 European Research Council (638173)

  • Robin Andersson

Independent Research Fund Denmark (6108-00038B)

  • Robin Andersson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pablo A Manavella, Universidad Nacional del Litoral-CONICET, Argentina

Publication history

  1. Preprint posted: April 18, 2021 (view preprint)
  2. Received: July 21, 2021
  3. Accepted: September 25, 2021
  4. Accepted Manuscript published: September 30, 2021 (version 1)
  5. Version of Record published: January 25, 2022 (version 2)

Copyright

© 2021, Arribas-Hernández et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,143
    Page views
  • 247
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Arribas-Hernández
  2. Sarah Rennie
  3. Tino Köster
  4. Carlotta Porcelli
  5. Martin Lewinski
  6. Prof. Dr. Dorothee Staiger
  7. Robin Andersson
  8. Peter Brodersen
(2021)
Principles of mRNA targeting via the Arabidopsis m6A-binding protein ECT2
eLife 10:e72375.
https://doi.org/10.7554/eLife.72375

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Noushin Hadadi et al.
    Tools and Resources

    Thermal adaptation is an extensively used intervention for enhancing or suppressing thermogenic and mitochondrial activity in adipose tissues. As such, it has been suggested as a potential lifestyle intervention for body weight maintenance. While the metabolic consequences of thermal acclimation are not limited to the adipose tissues, the impact on the rest of the tissues in context of their gene expression profile remains unclear. Here, we provide a systematic characterization of the effects in a comparative multi-tissue RNA sequencing approach following exposure of mice to 10 °C, 22 °C, or 34 °C in a panel of organs consisting of spleen, bone marrow, spinal cord, brain, hypothalamus, ileum, liver, quadriceps, subcutaneous-, visceral- and brown adipose tissues. We highlight that transcriptional responses to temperature alterations exhibit a high degree of tissue-specificity both at the gene level and at GO enrichment gene sets, and show that the tissue-specificity is not directed by the distinct basic gene expression pattern exhibited by the various organs. Our study places the adaptation of individual tissues to different temperatures in a whole-organism framework and provides integrative transcriptional analysis necessary for understanding the temperature-mediated biological programming.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Bethany Sump et al.
    Research Article

    For some inducible genes, the rate and molecular mechanism of transcriptional activation depends on the prior experiences of the cell. This phenomenon, called epigenetic transcriptional memory, accelerates reactivation and requires both changes in chromatin structure and recruitment of poised RNA Polymerase II (RNAPII) to the promoter. Memory of inositol starvation in budding yeast involves a positive feedback loop between transcription factor-dependent interaction with the nuclear pore complex and histone H3 lysine 4 dimethylation (H3K4me2). While H3K4me2 is essential for recruitment of RNAPII and faster reactivation, RNAPII is not required for H3K4me2. Unlike RNAPII-dependent H3K4me2 associated with transcription, RNAPII-independent H3K4me2 requires Nup100, SET3C, the Leo1 subunit of the Paf1 complex and, upon degradation of an essential transcription factor, is inherited through multiple cell cycles. The writer of this mark (COMPASS) physically interacts with the potential reader (SET3C), suggesting a molecular mechanism for the spreading and re-incorporation of H3K4me2 following DNA replication.