1. Genetics and Genomics
  2. Plant Biology
Download icon

The YTHDF proteins ECT2 and ECT3 bind largely overlapping target sets and influence target mRNA abundance, not alternative polyadenylation

  1. Laura Arribas-Hernández  Is a corresponding author
  2. Sarah Rennie
  3. Michael Schon
  4. Carlotta Porcelli
  5. Balaji Enugutti
  6. Robin Andersson
  7. Michael D Nodine
  8. Peter Brodersen  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Gregor Mendel Institute, Austria
Research Article
  • Cited 0
  • Views 266
  • Annotations
Cite this article as: eLife 2021;10:e72377 doi: 10.7554/eLife.72377

Abstract

Gene regulation via N6-methyladenosine (m6A) in mRNA involves RNA-binding proteins that recognize m6A via a YT521-B homology (YTH) domain. The plant YTH domain proteins ECT2 and ECT3 act genetically redundantly in stimulating cell proliferation during organogenesis, but several fundamental questions regarding their mode of action remain unclear. Here, we use HyperTRIBE (targets of RNA-binding proteins identified by editing) to show that most ECT2 and ECT3 targets overlap, with only few examples of preferential targeting by either of the two proteins. HyperTRIBE in different mutant backgrounds also provides direct views of redundant and specific target interactions of the two proteins. We also show that contrary to conclusions of previous reports, ECT2 does not accumulate in the nucleus. Accordingly, inactivation of ECT2, ECT3 and their surrogate ECT4 does not change patterns of polyadenylation site choice in ECT2/3 target mRNAs, but does lead to lower steady state accumulation of target mRNAs. In addition, mRNA and microRNA expression profiles show indications of stress response activation in ect2/ect3/ect4 mutants, likely via indirect effects. Thus, previous suggestions of control of alternative polyadenylation by ECT2 are not supported by evidence, and ECT2 and ECT3 act largely redundantly to regulate target mRNA, including its abundance, in the cytoplasm.

Data availability

Accession numbersThe raw and processed data for ECT3-HyperTRIBE, Smart-seq2 from root protoplasts and RNA-seq from root tips have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under the accession number PRJEB44359.Code availabilityThe code for running the hyperTRIBER pipeline is available at https://github.com/sarah-ku/targets_arabidopsis,and the nanoPARE pipeline for PAS analysis can be found at https://github.com/Gregor-Mendel-Institute/nanoPARE.

The following data sets were generated

Article and author information

Author details

  1. Laura Arribas-Hernández

    University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    laura.arribas@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah Rennie

    University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Schon

    Gregor Mendel Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Carlotta Porcelli

    Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4675-4898
  5. Balaji Enugutti

    Gregor Mendel Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0816-024X
  6. Robin Andersson

    University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1516-879X
  7. Michael D Nodine

    Gregor Mendel Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6204-8857
  8. Peter Brodersen

    University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    PBrodersen@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1083-1150

Funding

H2020 European Research Council (PATHORISC,ERC-2016-COG 726417)

  • Peter Brodersen

Independent Research Fund Denmark (9040-00409B)

  • Peter Brodersen

H2020 European Research Council (638173)

  • Robin Andersson

Independent Research Fund Denmark (6108-00038B)

  • Robin Andersson

H2020 European Research Council (63788)

  • Michael D Nodine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pablo A Manavella, Universidad Nacional del Litoral-CONICET, Argentina

Publication history

  1. Received: July 21, 2021
  2. Accepted: September 25, 2021
  3. Accepted Manuscript published: September 30, 2021 (version 1)

Copyright

© 2021, Arribas-Hernández et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 266
    Page views
  • 65
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Gabriela Santos-Rodriguez et al.
    Research Article Updated

    Many primate genes produce circular RNAs (circRNAs). However, the extent of circRNA conservation between closely related species remains unclear. By comparing tissue-specific transcriptomes across over 70 million years of primate evolution, we identify that within 3 million years circRNA expression profiles diverged such that they are more related to species identity than organ type. However, our analysis also revealed a subset of circRNAs with conserved neural expression across tens of millions of years of evolution. By comparing to species-specific circRNAs, we identified that the downstream intron of the conserved circRNAs display a dramatic lengthening during evolution due to the insertion of novel retrotransposons. Our work provides comparative analyses of the mechanisms promoting circRNAs to generate increased transcriptomic complexity in primates.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Franziska Gruhl et al.
    Research Article Updated

    Circular RNAs (circRNAs) are found across eukaryotes and can function in post-transcriptional gene regulation. Their biogenesis through a circle-forming backsplicing reaction is facilitated by reverse-complementary repetitive sequences promoting pre-mRNA folding. Orthologous genes from which circRNAs arise, overall contain more strongly conserved splice sites and exons than other genes, yet it remains unclear to what extent this conservation reflects purifying selection acting on the circRNAs themselves. Our analyses of circRNA repertoires from five species representing three mammalian lineages (marsupials, eutherians: rodents, primates) reveal that surprisingly few circRNAs arise from orthologous exonic loci across all species. Even the circRNAs from orthologous loci are associated with young, recently active and species-specific transposable elements, rather than with common, ancient transposon integration events. These observations suggest that many circRNAs emerged convergently during evolution – as a byproduct of splicing in orthologs prone to transposon insertion. Overall, our findings argue against widespread functional circRNA conservation.