Disease: Deciphering the triad of infection, immunity and pathology

The factors which drive and control disease progression can be inferred from mathematical models that integrate measures of immune responses, data from tissue sampling and markers of infection dynamics.
  1. Frederik Graw  Is a corresponding author
  1. BioQuant (Center for Quantitative Biology) at Heidelberg University, Germany

A fever, a cough, a splitting headache… Being sick often comes with tell-tale signs which worsen as the disease progresses and tissues become damaged. These symptoms result from complex interactions between the infecting pathogen, the inflammation process, and the response from the immune system. Tracking these mechanisms and how they interact, as well as identifying which factors determine when the disease recedes or progresses, is essential for establishing better treatment strategies.

In this effort, a more refined understanding of infection and immune responses has emerged from combining experimental and clinical measurements with mathematical models (Perelson, 2002). However, it is still difficult to link tissue pathology and disease severity with viral load or immune cell counts, which respectively measure the amount of virus and of certain immune actors in the body. Now, in eLife, Amber Smith and colleagues at St. Jude Children’s Research Hospital, the University of Tennessee Health Science Center and the Washington University School of Medicine – including Margaret Myers and Amanda Smith as joing first authors – report how viral infection, counteracting immune responses and lung pathology interact as mice fight off influenza A (Myers et al., 2021).

First, the team tracked how viral load and the number of CD8+ T cells, an important immune actor that helps to clear infected cells, progressed over time. In combination with mathematical models, these measurements allowed Myers et al. to estimate several parameters that reflect the pace at which the virus replicates, the strength of the immune response, and the interactions between these processes. While this had already been achieved in previous studies (e.g. Baccam et al., 2006), Myers et al. also analyzed the anatomy of the lung tissue over time, assessing the damage caused by infection and inflammation as well as how much the organ eventually regenerates.

Then, the team compared these data to values from their mathematical model that described viral load and CD8+ T cells counts, thereby linking viral load dynamics and specific immune responses to disease pathology and severity (Figure 1). In particular, the analysis shed light on how the relative number of immune cells correlates with the level of lung tissue cleared from the virus and, thus, the mice’s ability to recover from infection. These quantitative relationships could help to assess how well the virus is controlled within tissues simply by relying on easily accessible markers that are, for example, present in the blood. This would reduce the need for invasive tissue samples.

The triad of infection, immunity and disease pathology.

Separate data, such as viral load (left) – the quantity of virus present in a specific volume of fluid – immune cell counts (middle) and histological assessment of tissue sections (right) provide information on the dynamics of infection, immune responses and disease pathology. Mathematical modelling that integrates these measurements makes it possible to assess how the individual processes are connected, and to identify relevant prognostic markers that allow prediction of disease progression.

Individual molecular processes and specific aspects of viral replication can be studied extensively within in vitro cell culture systems. However, the full triad of infection, immunity and especially tissue pathology can only be reliably assessed within conditions that are physiologically relevant (Fackler et al., 2014). Indeed, simple cell culture systems insufficiently address the impact tissue structure can have on infection dynamics, immune activation and clearing mechanisms (Fackler et al., 2014; Imle et al., 2019).

Myers et al. used frequent samples and histological analyses to infer how infected tissues change over time. Yet, imaging technologies may continue to improve so that it becomes possible to observe the interactions between host and pathogen within tissues in real-time (Coombes and Robey, 2010). These approaches could help to investigate whether quantitative relationships as highlighted by Myers et al. also play a role in other infections and in other tissues. The expanding field of organoids – whereby simple, miniature organs are grown in the laboratory – also represents a promising step towards understanding how cells interact within structured, tissue-related environments (Gosselin et al., 2018; Bar-Ephraim et al., 2020). Combined with new technologies such as single-cell sequencing methods (Triana et al., 2021; Youk et al., 2020), these approaches will help to determine the molecular processes that govern disease progression, and how these might differ between patients.

Despite these new experimental and diagnostic technologies, data-driven mathematical modeling and analytical methods will continue to fulfil a key role for deciphering the interplay between infection, tissue pathology and disease severity. Using these models makes it possible to integrate different types of measurements from various places and times, and to disentangle the contributions of individual processes to the infection dynamics. It is only by understanding exactly how individual processes interact over time that scientists will be able to find and validate prognostic markers which predict disease progression.

References

Article and author information

Author details

  1. Frederik Graw

    Frederik Graw is in the BioQuant (Center for Quantitative Biology) at Heidelberg University, Heidelberg, Germany

    For correspondence
    frederik.graw@bioquant.uni-heidelberg.de
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1198-6632

Publication history

  1. Version of Record published: September 1, 2021 (version 1)

Copyright

© 2021, Graw

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 681
    Page views
  • 82
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Frederik Graw
(2021)
Disease: Deciphering the triad of infection, immunity and pathology
eLife 10:e72379.
https://doi.org/10.7554/eLife.72379

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Kiri Choi, Won Kyu Kim, Changbong Hyeon
    Research Article

    The projection neurons (PNs), reconstructed from electron microscope (EM) images of the Drosophila olfactory system, offer a detailed view of neuronal anatomy, providing glimpses into information flow in the brain. About 150 uPNs constituting 58 glomeruli in the antennal lobe (AL) are bundled together in the axonal extension, routing the olfactory signal received at AL to mushroom body (MB) calyx and lateral horn (LH). Here we quantify the neuronal organization in terms of the inter-PN distances and examine its relationship with the odor types sensed by Drosophila. The homotypic uPNs that constitute glomeruli are tightly bundled and stereotyped in position throughout the neuropils, even though the glomerular PN organization in AL is no longer sustained in the higher brain center. Instead, odor-type dependent clusters consisting of multiple homotypes innervate the MB calyx and LH. Pheromone-encoding and hygro/thermo-sensing homotypes are spatially segregated in MB calyx, whereas two distinct clusters of food-related homotypes are found in LH in addition to the segregation of pheromone-encoding and hygro/thermo-sensing homotypes. We find that there are statistically significant associations between the spatial organization among a group of homotypic uPNs and certain stereotyped olfactory responses. Additionally, the signals from some of the tightly bundled homotypes converge to a specific group of lateral horn neurons (LHNs), which indicates that homotype (or odor type) specific integration of signals occurs at the synaptic interface between PNs and LHNs. Our findings suggest that before neural computation in the inner brain, some of the olfactory information are already encoded in the spatial organization of uPNs, illuminating that a certain degree of labeled-line strategy is at work in the Drosophila olfactory system.

    1. Computational and Systems Biology
    Christian A Pulver, Emine Celiker ... Fernando Montealegre-Z
    Research Article

    Early predator detection is a key component of the predator-prey arms race and has driven the evolution of multiple animal hearing systems. Katydids (Insecta) have sophisticated ears, each consisting of paired tympana on each foreleg that receive sound both externally, through the air, and internally via a narrowing ear canal running through the leg from an acoustic spiracle on the thorax. These ears are pressure-time difference receivers capable of sensitive and accurate directional hearing across a wide frequency range. Many katydid species have cuticular pinnae which form cavities around the outer tympanal surfaces, but their function is unknown. We investigated pinnal function in the katydid Copiphora gorgonensis by combining experimental biophysics and numerical modelling using 3D ear geometries. We found that the pinnae in C. gorgonensis do not assist in directional hearing for conspecific call frequencies, but instead act as ultrasound detectors. Pinnae induced large sound pressure gains (20–30 dB) that enhanced sound detection at high ultrasonic frequencies (>60 kHz), matching the echolocation range of co-occurring insectivorous gleaning bats. These findings were supported by behavioural and neural audiograms and pinnal cavity resonances from live specimens, and comparisons with the pinnal mechanics of sympatric katydid species, which together suggest that katydid pinnae primarily evolved for the enhanced detection of predatory bats.