A mechano-osmotic feedback couples cell volume to the rate of cell deformation

  1. Larisa Venkova
  2. Amit Singh Vishen
  3. Sergio Lembo
  4. Nishit Srivastava
  5. Baptiste Duchamp
  6. Artur Ruppel
  7. Alice Williart
  8. Stéphane Vassilopoulos
  9. Alexandre Deslys
  10. Juan-Manuel Garcia Arcos
  11. Alba Diz-Muñoz
  12. Martial Balland
  13. Jean-François Joanny
  14. Damien Cuvelier
  15. Pierre Sens  Is a corresponding author
  16. Matthieu Piel  Is a corresponding author
  1. Institut Curie, CNRS, UMR 144, France
  2. European Molecular Biology Laboratory, Germany
  3. Laboratoire Interdisciplinaire de Physique, France
  4. Sorbonne Université, INSERM, France
  5. Institut Curie, CNRS UMR168, France

Abstract

Mechanics has been a central focus of physical biology in the past decade. In comparison, how cells manage their size is less understood. Here we show that a parameter central to both the physics and the physiology of the cell, its volume, depends on a mechano-osmotic coupling. We found that cells change their volume depending on the rate at which they change shape, when they spontaneously spread are externally deformed. Cells undergo slow deformation at constant volume, while fast deformation leads to volume loss. We propose a mechano-sensitive pump and leak model to explain this phenomenon. Our model and experiments suggest that volume modulation depends on the state of the actin cortex and the coupling of ion fluxes to membrane tension. This mechano-osmotic coupling defines a membrane tension homeostasis module constantly at work in cells, causing volume fluctuations associated with fast cell shape changes, with potential consequences on cellular physiology.

Data availability

All data generated or analysed during this study are included in themanuscript and supporting file; all the raw analysed data shown in thefigure panels in the article are available in the accompanying SourceData files

Article and author information

Author details

  1. Larisa Venkova

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5721-7962
  2. Amit Singh Vishen

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  3. Sergio Lembo

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2253-8771
  4. Nishit Srivastava

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4177-6123
  5. Baptiste Duchamp

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  6. Artur Ruppel

    Laboratoire Interdisciplinaire de Physique, Grenoble, France
    Competing interests
    No competing interests declared.
  7. Alice Williart

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  8. Stéphane Vassilopoulos

    Sorbonne Université, INSERM, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0172-330X
  9. Alexandre Deslys

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  10. Juan-Manuel Garcia Arcos

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  11. Alba Diz-Muñoz

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6864-8901
  12. Martial Balland

    Laboratoire Interdisciplinaire de Physique, Grenoble, France
    Competing interests
    No competing interests declared.
  13. Jean-François Joanny

    PSL Research University, Institut Curie, CNRS UMR168, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6966-3222
  14. Damien Cuvelier

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  15. Pierre Sens

    Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
    For correspondence
    pierre.sens@curie.fr
    Competing interests
    Pierre Sens, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4523-3791
  16. Matthieu Piel

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    For correspondence
    matthieu.piel@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2848-177X

Funding

Agence Nationale de la Recherche (ANR-19-CE13-0030)

  • Matthieu Piel

Agence Nationale de la Recherche (ANR-10-EQPX-34)

  • Matthieu Piel

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL)

  • Matthieu Piel

Agence Nationale de la Recherche (ANR-10-LABX-31)

  • Matthieu Piel

Fondation pour la Recherche Médicale (FDT201805005592)

  • Larisa Venkova

Human Frontier Science Program (LT000305/2018-L)

  • Nishit Srivastava

Agence Nationale de la Recherche (ANR‐17‐CE13‐0020‐02)

  • Amit Singh Vishen

European Union's Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant agreement no. 641639)

  • Larisa Venkova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Venkova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,957
    views
  • 1,160
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Larisa Venkova
  2. Amit Singh Vishen
  3. Sergio Lembo
  4. Nishit Srivastava
  5. Baptiste Duchamp
  6. Artur Ruppel
  7. Alice Williart
  8. Stéphane Vassilopoulos
  9. Alexandre Deslys
  10. Juan-Manuel Garcia Arcos
  11. Alba Diz-Muñoz
  12. Martial Balland
  13. Jean-François Joanny
  14. Damien Cuvelier
  15. Pierre Sens
  16. Matthieu Piel
(2022)
A mechano-osmotic feedback couples cell volume to the rate of cell deformation
eLife 11:e72381.
https://doi.org/10.7554/eLife.72381

Share this article

https://doi.org/10.7554/eLife.72381

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Artem K Velichko, Nadezhda V Petrova ... Omar L Kantidze
    Research Article

    We investigated the role of the nucleolar protein Treacle in organizing and regulating the nucleolus in human cells. Our results support Treacle’s ability to form liquid-like phase condensates through electrostatic interactions among molecules. The formation of these biomolecular condensates is crucial for segregating nucleolar fibrillar centers from the dense fibrillar component and ensuring high levels of ribosomal RNA (rRNA) gene transcription and accurate rRNA processing. Both the central and C-terminal domains of Treacle are required to form liquid-like condensates. The initiation of phase separation is attributed to the C-terminal domain. The central domain is characterized by repeated stretches of alternatively charged amino acid residues and is vital for condensate stability. Overexpression of mutant forms of Treacle that cannot form liquid-like phase condensates compromises the assembly of fibrillar centers, suppressing rRNA gene transcription and disrupting rRNA processing. These mutant forms also fail to recruit DNA topoisomerase II binding protein 1 (TOPBP1), suppressing the DNA damage response in the nucleolus.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article Updated

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of preciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures preciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the preciliary vesicle recruitment, but not for other steps of cilium formation (Kanie et al., 2025). The lack of a membrane-binding motif in CEP89 suggests that it may indirectly recruit preciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and the centriole-associated vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similar to CEP89 knockouts, preciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the preciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the preciliary vesicles.