A mechano-osmotic feedback couples cell volume to the rate of cell deformation

  1. Larisa Venkova
  2. Amit Singh Vishen
  3. Sergio Lembo
  4. Nishit Srivastava
  5. Baptiste Duchamp
  6. Artur Ruppel
  7. Alice Williart
  8. Stéphane Vassilopoulos
  9. Alexandre Deslys
  10. Juan-Manuel Garcia Arcos
  11. Alba Diz-Muñoz
  12. Martial Balland
  13. Jean-François Joanny
  14. Damien Cuvelier
  15. Pierre Sens  Is a corresponding author
  16. Matthieu Piel  Is a corresponding author
  1. Institut Curie, CNRS, UMR 144, France
  2. European Molecular Biology Laboratory, Germany
  3. Laboratoire Interdisciplinaire de Physique, France
  4. Sorbonne Université, INSERM, France
  5. Institut Curie, CNRS UMR168, France

Abstract

Mechanics has been a central focus of physical biology in the past decade. In comparison, how cells manage their size is less understood. Here we show that a parameter central to both the physics and the physiology of the cell, its volume, depends on a mechano-osmotic coupling. We found that cells change their volume depending on the rate at which they change shape, when they spontaneously spread are externally deformed. Cells undergo slow deformation at constant volume, while fast deformation leads to volume loss. We propose a mechano-sensitive pump and leak model to explain this phenomenon. Our model and experiments suggest that volume modulation depends on the state of the actin cortex and the coupling of ion fluxes to membrane tension. This mechano-osmotic coupling defines a membrane tension homeostasis module constantly at work in cells, causing volume fluctuations associated with fast cell shape changes, with potential consequences on cellular physiology.

Data availability

All data generated or analysed during this study are included in themanuscript and supporting file; all the raw analysed data shown in thefigure panels in the article are available in the accompanying SourceData files

Article and author information

Author details

  1. Larisa Venkova

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5721-7962
  2. Amit Singh Vishen

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  3. Sergio Lembo

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2253-8771
  4. Nishit Srivastava

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4177-6123
  5. Baptiste Duchamp

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  6. Artur Ruppel

    Laboratoire Interdisciplinaire de Physique, Grenoble, France
    Competing interests
    No competing interests declared.
  7. Alice Williart

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  8. Stéphane Vassilopoulos

    Sorbonne Université, INSERM, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0172-330X
  9. Alexandre Deslys

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  10. Juan-Manuel Garcia Arcos

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  11. Alba Diz-Muñoz

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6864-8901
  12. Martial Balland

    Laboratoire Interdisciplinaire de Physique, Grenoble, France
    Competing interests
    No competing interests declared.
  13. Jean-François Joanny

    PSL Research University, Institut Curie, CNRS UMR168, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6966-3222
  14. Damien Cuvelier

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    Competing interests
    No competing interests declared.
  15. Pierre Sens

    Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
    For correspondence
    pierre.sens@curie.fr
    Competing interests
    Pierre Sens, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4523-3791
  16. Matthieu Piel

    PSL Research University, Institut Curie, CNRS, UMR 144, Paris, France
    For correspondence
    matthieu.piel@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2848-177X

Funding

Agence Nationale de la Recherche (ANR-19-CE13-0030)

  • Matthieu Piel

Agence Nationale de la Recherche (ANR-10-EQPX-34)

  • Matthieu Piel

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL)

  • Matthieu Piel

Agence Nationale de la Recherche (ANR-10-LABX-31)

  • Matthieu Piel

Fondation pour la Recherche Médicale (FDT201805005592)

  • Larisa Venkova

Human Frontier Science Program (LT000305/2018-L)

  • Nishit Srivastava

Agence Nationale de la Recherche (ANR‐17‐CE13‐0020‐02)

  • Amit Singh Vishen

European Union's Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant agreement no. 641639)

  • Larisa Venkova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Venkova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,462
    views
  • 1,085
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Larisa Venkova
  2. Amit Singh Vishen
  3. Sergio Lembo
  4. Nishit Srivastava
  5. Baptiste Duchamp
  6. Artur Ruppel
  7. Alice Williart
  8. Stéphane Vassilopoulos
  9. Alexandre Deslys
  10. Juan-Manuel Garcia Arcos
  11. Alba Diz-Muñoz
  12. Martial Balland
  13. Jean-François Joanny
  14. Damien Cuvelier
  15. Pierre Sens
  16. Matthieu Piel
(2022)
A mechano-osmotic feedback couples cell volume to the rate of cell deformation
eLife 11:e72381.
https://doi.org/10.7554/eLife.72381

Share this article

https://doi.org/10.7554/eLife.72381

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Nathaniel Paul Meyer, Tania Singh ... Diane L Barber
    Research Article

    Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.