Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes

  1. Viraaj Jayaram
  2. Nirag Kadakia
  3. Thierry Emonet  Is a corresponding author
  1. Yale University, United States

Abstract

We and others have shown that during odor plume navigation, walking Drosophila melanogaster bias their motion upwind in response to both the frequency of their encounters with the odor (Demir et al., 2020), and the intermittency of the odor signal, which we define to be the fraction of time the signal is above a detection threshold (Alvarez-Salvado et al., 2018). Here we combine and simplify previous mathematical models that recapitulated these data to investigate the benefits of sensing both of these temporal features, and how these benefits depend on the spatiotemporal statistics of the odor plume. Through agent-based simulations, we find that navigators that only use frequency or intermittency perform well in some environments - achieving maximal performance when gains are near those inferred from experiment - but fail in others. Robust performance across diverse environments requires both temporal modalities. However, we also find a steep tradeoff when using both sensors simultaneously, suggesting a strong benefit to modulating how much each sensor is weighted, rather than using both in a fixed combination across plumes. Finally, we show that the circuitry of the Drosophila olfactory periphery naturally enables simultaneous intermittency and frequency sensing, enhancing robust navigation through a diversity of odor environments. Together, our results suggest that the first stage of olfactory processing selects and encodes temporal features of odor signals critical to real-world navigation tasks.

Data availability

All data analyzed in this study are available from the original publications. Codes are available at https://github.com/emonetlab/plume-temporal-navigation

The following previously published data sets were used

Article and author information

Author details

  1. Viraaj Jayaram

    Department of Physics, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Nirag Kadakia

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9978-6450
  3. Thierry Emonet

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    For correspondence
    thierry.emonet@yale.edu
    Competing interests
    Thierry Emonet, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6746-6564

Funding

National Institutes of Health (F32MH118700)

  • Nirag Kadakia

National Institutes of Health (K99DC019397)

  • Nirag Kadakia

National Institutes of Health (R01GM106189)

  • Thierry Emonet

Yale University (Program in Physics,Engineering,and Biology)

  • Viraaj Jayaram

Sloan-Swartz Foundation

  • Nirag Kadakia

National Institutes of Health (R01GM138533)

  • Thierry Emonet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Agnese Seminara, University of Genoa, Italy

Version history

  1. Preprint posted: July 28, 2021 (view preprint)
  2. Received: July 28, 2021
  3. Accepted: January 20, 2022
  4. Accepted Manuscript published: January 24, 2022 (version 1)
  5. Version of Record published: February 24, 2022 (version 2)

Copyright

© 2022, Jayaram et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,329
    Page views
  • 192
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Viraaj Jayaram
  2. Nirag Kadakia
  3. Thierry Emonet
(2022)
Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes
eLife 11:e72415.
https://doi.org/10.7554/eLife.72415

Share this article

https://doi.org/10.7554/eLife.72415

Further reading

    1. Neuroscience
    Harry Clark, Matthew F Nolan
    Research Article

    Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.