Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes

  1. Viraaj Jayaram
  2. Nirag Kadakia
  3. Thierry Emonet  Is a corresponding author
  1. Yale University, United States

Abstract

We and others have shown that during odor plume navigation, walking Drosophila melanogaster bias their motion upwind in response to both the frequency of their encounters with the odor (Demir et al., 2020), and the intermittency of the odor signal, which we define to be the fraction of time the signal is above a detection threshold (Alvarez-Salvado et al., 2018). Here we combine and simplify previous mathematical models that recapitulated these data to investigate the benefits of sensing both of these temporal features, and how these benefits depend on the spatiotemporal statistics of the odor plume. Through agent-based simulations, we find that navigators that only use frequency or intermittency perform well in some environments - achieving maximal performance when gains are near those inferred from experiment - but fail in others. Robust performance across diverse environments requires both temporal modalities. However, we also find a steep tradeoff when using both sensors simultaneously, suggesting a strong benefit to modulating how much each sensor is weighted, rather than using both in a fixed combination across plumes. Finally, we show that the circuitry of the Drosophila olfactory periphery naturally enables simultaneous intermittency and frequency sensing, enhancing robust navigation through a diversity of odor environments. Together, our results suggest that the first stage of olfactory processing selects and encodes temporal features of odor signals critical to real-world navigation tasks.

Data availability

All data analyzed in this study are available from the original publications. Codes are available at https://github.com/emonetlab/plume-temporal-navigation

The following previously published data sets were used

Article and author information

Author details

  1. Viraaj Jayaram

    Department of Physics, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Nirag Kadakia

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9978-6450
  3. Thierry Emonet

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    For correspondence
    thierry.emonet@yale.edu
    Competing interests
    Thierry Emonet, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6746-6564

Funding

National Institutes of Health (F32MH118700)

  • Nirag Kadakia

National Institutes of Health (K99DC019397)

  • Nirag Kadakia

National Institutes of Health (R01GM106189)

  • Thierry Emonet

Yale University (Program in Physics,Engineering,and Biology)

  • Viraaj Jayaram

Sloan-Swartz Foundation

  • Nirag Kadakia

National Institutes of Health (R01GM138533)

  • Thierry Emonet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Jayaram et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,497
    views
  • 209
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Viraaj Jayaram
  2. Nirag Kadakia
  3. Thierry Emonet
(2022)
Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes
eLife 11:e72415.
https://doi.org/10.7554/eLife.72415

Share this article

https://doi.org/10.7554/eLife.72415

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.