Abstract

Staphylococcus aureus (SA) leukocidin LukED belongs to a family of bicomponent pore forming toxins that play important roles in SA immune evasion and nutrient acquisition. LukED targets specific G protein-coupled chemokine receptors to lyse human erythrocytes (red blood cells) and leukocytes (white blood cells). The first recognition step of receptors is critical for specific cell targeting and lysis. The structural and molecular bases for this mechanism are not well understood but could constitute essential information to guide antibiotic development. Here, we characterized the interaction of LukE with chemokine receptors ACKR1, CCR2 and CCR5 using a combination of structural, pharmacological and computational approaches. First, crystal structures of LukE in complex with a small molecule mimicking sulfotyrosine side chain (p-cresyl sulfate) and with peptides containing sulfotyrosines issued from receptor sequences revealed the location of receptor sulfotyrosine binding sites in the toxins. Then, by combining previous and novel experimental data with protein docking, classical and accelerated weight histogram (AWH) molecular dynamics we propose models of the ACKR1-LukE and CCR5-LukE complexes. This work provides novel insights into chemokine receptor recognition by leukotoxins and suggests that the conserved sulfotyrosine binding pocket could be a target of choice for future drug development.

Data availability

Diffraction data have been deposited in PDB under the accession codes 7P8T, 7P8S, 7P8U, 7P8X and 7P93. Source Data files containing the computational models of the ACKR1-LukE and CCR5-LukE complexes in Figures 6 and 7 have been provided as pdb files. Figure 2 - Source Data 1 contain the numerical data used to generate the figure.

Article and author information

Author details

  1. Paul Lambey

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Omolade Otun

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaojing Cong

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. François Hoh

    Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054- University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Luc Brunel

    Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054- University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Pascal Verdié

    Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054- University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5807-0293
  7. Claire M Grison

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Fanny Peysson

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Sylvain Jeannot

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Thierry Durroux

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Cherine Betara

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Sébastien Granier

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    For correspondence
    sebastien.granier@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
  13. Cédric Leyrat

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    For correspondence
    cedric.leyrat@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0189-0562

Funding

Agence Nationale de la Recherche (ANR-17-CE15-0002-01)

  • Cédric Leyrat

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Lambey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 230
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Lambey
  2. Omolade Otun
  3. Xiaojing Cong
  4. François Hoh
  5. Luc Brunel
  6. Pascal Verdié
  7. Claire M Grison
  8. Fanny Peysson
  9. Sylvain Jeannot
  10. Thierry Durroux
  11. Cherine Betara
  12. Sébastien Granier
  13. Cédric Leyrat
(2022)
Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins
eLife 11:e72555.
https://doi.org/10.7554/eLife.72555

Share this article

https://doi.org/10.7554/eLife.72555

Further reading

    1. Microbiology and Infectious Disease
    Louise Tzung-Harn Hsieh, Belinda S Hall ... Rachel E Simmonds
    Research Article

    The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone’s effects on human primary vascular endothelial cells in vitro. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo during M. ulcerans infection in the mouse model. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.

    1. Microbiology and Infectious Disease
    Xin Ma, Meng Li ... Xinyan Han
    Research Article

    As the largest mucosal surface, the gut has built a physical, chemical, microbial, and immune barrier to protect the body against pathogen invasion. The disturbance of gut microbiota aggravates pathogenic bacteria invasion and gut barrier injury. Fecal microbiota transplantation (FMT) is a promising treatment for microbiome-related disorders, where beneficial strain engraftment is a significant factor influencing FMT outcomes. The aim of this research was to explore the effect of FMT on antibiotic-induced microbiome-disordered (AIMD) models infected with enterotoxigenic Escherichia coli (ETEC). We used piglet, mouse, and intestinal organoid models to explore the protective effects and mechanisms of FMT on ETEC infection. The results showed that FMT regulated gut microbiota and enhanced the protection of AIMD piglets against ETEC K88 challenge, as demonstrated by reduced intestinal pathogen colonization and alleviated gut barrier injury. Akkermansia muciniphila (A. muciniphila) and Bacteroides fragilis (B. fragilis) were identified as two strains that may play key roles in FMT. We further investigated the alleviatory effects of these two strains on ETEC infection in the AIMD mice model, which revealed that A. muciniphila and B. fragilis relieved ETEC-induced intestinal inflammation by maintaining the proportion of Treg/Th17 cells and epithelial damage by moderately activating the Wnt/β-catenin signaling pathway, while the effect of A. muciniphila was better than B. fragilis. We, therefore, identified whether A. muciniphila protected against ETEC infection using basal-out and apical-out intestinal organoid models. A. muciniphila did protect the intestinal stem cells and stimulate the proliferation and differentiation of intestinal epithelium, and the protective effects of A. muciniphila were reversed by Wnt inhibitor. FMT alleviated ETEC-induced gut barrier injury and intestinal inflammation in the AIMD model. A. muciniphila was identified as a key strain in FMT to promote the proliferation and differentiation of intestinal stem cells by mediating the Wnt/β-catenin signaling pathway.