Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins

  1. Paul Lambey
  2. Omolade Otun
  3. Xiaojing Cong
  4. François Hoh
  5. Luc Brunel
  6. Pascal Verdié
  7. Claire M Grison
  8. Fanny Peysson
  9. Sylvain Jeannot
  10. Thierry Durroux
  11. Cherine Bechara
  12. Sébastien Granier  Is a corresponding author
  13. Cédric Leyrat  Is a corresponding author
  1. Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, France
  2. Université de Montpellier, CNRS, INSERM, France

Abstract

Staphylococcus aureus (SA) leukocidin LukED belongs to a family of bicomponent pore forming toxins that play important roles in SA immune evasion and nutrient acquisition. LukED targets specific G protein-coupled chemokine receptors to lyse human erythrocytes (red blood cells) and leukocytes (white blood cells). The first recognition step of receptors is critical for specific cell targeting and lysis. The structural and molecular bases for this mechanism are not well understood but could constitute essential information to guide antibiotic development. Here, we characterized the interaction of LukE with chemokine receptors ACKR1, CCR2 and CCR5 using a combination of structural, pharmacological and computational approaches. First, crystal structures of LukE in complex with a small molecule mimicking sulfotyrosine side chain (p-cresyl sulfate) and with peptides containing sulfotyrosines issued from receptor sequences revealed the location of receptor sulfotyrosine binding sites in the toxins. Then, by combining previous and novel experimental data with protein docking, classical and accelerated weight histogram (AWH) molecular dynamics we propose models of the ACKR1-LukE and CCR5-LukE complexes. This work provides novel insights into chemokine receptor recognition by leukotoxins and suggests that the conserved sulfotyrosine binding pocket could be a target of choice for future drug development.

Data availability

Diffraction data have been deposited in PDB under the accession codes 7P8T, 7P8S, 7P8U, 7P8X and 7P93. Source Data files containing the computational models of the ACKR1-LukE and CCR5-LukE complexes in Figures 6 and 7 have been provided as pdb files. Figure 2 - Source Data 1 contain the numerical data used to generate the figure.

Article and author information

Author details

  1. Paul Lambey

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Omolade Otun

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaojing Cong

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. François Hoh

    Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Luc Brunel

    Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Pascal Verdié

    Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5807-0293
  7. Claire M Grison

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Fanny Peysson

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Sylvain Jeannot

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Thierry Durroux

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Cherine Bechara

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Sébastien Granier

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    For correspondence
    sebastien.granier@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
  13. Cédric Leyrat

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    For correspondence
    cedric.leyrat@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0189-0562

Funding

Agence Nationale de la Recherche (ANR-17-CE15-0002-01)

  • Cédric Leyrat

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Lambey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,378
    views
  • 230
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Lambey
  2. Omolade Otun
  3. Xiaojing Cong
  4. François Hoh
  5. Luc Brunel
  6. Pascal Verdié
  7. Claire M Grison
  8. Fanny Peysson
  9. Sylvain Jeannot
  10. Thierry Durroux
  11. Cherine Bechara
  12. Sébastien Granier
  13. Cédric Leyrat
(2022)
Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins
eLife 11:e72555.
https://doi.org/10.7554/eLife.72555

Share this article

https://doi.org/10.7554/eLife.72555

Further reading

    1. Microbiology and Infectious Disease
    Julia A Hotinger, Ian W Campbell ... Matthew K Waldor
    Research Article

    Murine models are often used to study the pathogenicity and dissemination of the enteric pathogen Salmonella enterica serovar Typhimurium. Here, we quantified S. Typhimurium population dynamics in mice using the STAMPR analytic pipeline and a highly diverse S. Typhimurium barcoded library containing ~55,000 unique strains distinguishable by genomic barcodes by enumerating S. Typhimurium founding populations and deciphering routes of spread in mice. We found that a severe bottleneck allowed only one in a million cells from an oral inoculum to establish a niche in the intestine. Furthermore, we observed compartmentalization of pathogen populations throughout the intestine, with few barcodes shared between intestinal segments and feces. This severe bottleneck widened and compartmentalization was reduced after streptomycin treatment, suggesting the microbiota plays a key role in restricting the pathogen’s colonization and movement within the intestine. Additionally, there was minimal sharing between the intestine and extraintestinal organ populations, indicating dissemination to extraintestinal sites occurs rapidly, before substantial pathogen expansion in the intestine. Bypassing the intestinal bottleneck by inoculating mice via intravenous or intraperitoneal injection revealed that Salmonella re-enters the intestine after establishing niches in extraintestinal sites by at least two distinct pathways. One pathway results in a diverse intestinal population. The other re-seeding pathway is through the bile, where the pathogen is often clonal, leading to clonal intestinal populations and correlates with gallbladder pathology. Together, these findings deepen our understanding of Salmonella population dynamics.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Xu Zheng, Shi Yu ... Guangxun Meng
    Research Article

    Innate immune responses triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection play pivotal roles in the pathogenesis of COVID-19, while host factors including proinflammatory cytokines are critical for viral containment. By utilizing quantitative and qualitative models, we discovered that soluble factors secreted by human monocytes potently inhibit SARS-CoV-2-induced cell-cell fusion in viral-infected cells. Through cytokine screening, we identified that interleukin-1β (IL-1β), a key mediator of inflammation, inhibits syncytia formation mediated by various SARS-CoV-2 strains. Mechanistically, IL-1β activates RhoA/ROCK signaling through a non-canonical IL-1 receptor-dependent pathway, which drives the enrichment of actin bundles at the cell-cell junctions, thus prevents syncytia formation. Notably, in vivo infection experiments in mice confirmed that IL-1β significantly restricted SARS-CoV-2 spread in the lung epithelium. Together, by revealing the function and underlying mechanism of IL-1β on SARS-CoV-2-induced cell-cell fusion, our study highlights an unprecedented antiviral function for cytokines during viral infection.