Distinguishing different modes of growth using single-cell data

  1. Prathitha Kar
  2. Sriram Tiruvadi-Krishnan
  3. Jaana Männik
  4. Jaan Männik  Is a corresponding author
  5. Ariel Amir  Is a corresponding author
  1. Harvard University, United States
  2. University of Tennessee, United States
  3. The University of Tennessee, United States

Abstract

Collection of high-throughput data has become prevalent in biology. Large datasets allow the use of statistical constructs such as binning and linear regression to quantify relationships between variables and hypothesize underlying biological mechanisms based on it. We discuss several such examples in relation to single-cell data and cellular growth. In particular, we show instances where what appears to be ordinary use of these statistical methods leads to incorrect conclusions such as growth being non-exponential as opposed to exponential and vice versa. We propose that the data analysis and its interpretation should be done in the context of a generative model, if possible. In this way, the statistical methods can be validated either analytically or against synthetic data generated via the use of the model, leading to a consistent method for inferring biological mechanisms from data. On applying the validated methods of data analysis to infer cellular growth on our experimental data, we find the growth of length in E. coli to be non-exponential. Our analysis shows that in the later stages of the cell cycle the growth rate is faster than exponential.

Data availability

All data generated during this study are deposited in Dataverse-:Kar, Prathitha; Tiruvadi-Krishnan, Sriram; Männik, Jaana; Männik, Jaan; Amir, Ariel, 2021, "Distinguishing different modes of growth using single-cell data", https://doi.org/10.7910/DVN/BNQUDW, Harvard Dataverse, V1

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Prathitha Kar

    Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4091-6860
  2. Sriram Tiruvadi-Krishnan

    Department of Chemistry and Chemical Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jaana Männik

    Department of Chemistry and Chemical Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jaan Männik

    Department of Chemistry and Chemical Biology, The University of Tennessee, Knoxville, United States
    For correspondence
    jmannik@utk.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Ariel Amir

    Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    For correspondence
    arielamir@seas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2611-0139

Funding

US-Israel BSF Research Grant (2017004)

  • Jaan Männik

National Institutes of Health (R01GM127413)

  • Jaan Männik

National Science Foundation (NSF CAREER 1752024)

  • Ariel Amir

National Science Foundation (NSF award 1806818)

  • Prathitha Kar

National Institutes of Health (NIH grant 103346)

  • Prathitha Kar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,082
    views
  • 364
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prathitha Kar
  2. Sriram Tiruvadi-Krishnan
  3. Jaana Männik
  4. Jaan Männik
  5. Ariel Amir
(2021)
Distinguishing different modes of growth using single-cell data
eLife 10:e72565.
https://doi.org/10.7554/eLife.72565

Share this article

https://doi.org/10.7554/eLife.72565

Further reading

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.