Distinguishing different modes of growth using single-cell data

  1. Prathitha Kar
  2. Sriram Tiruvadi-Krishnan
  3. Jaana Männik
  4. Jaan Männik  Is a corresponding author
  5. Ariel Amir  Is a corresponding author
  1. Harvard University, United States
  2. University of Tennessee, United States

Abstract

Collection of high-throughput data has become prevalent in biology. Large datasets allow the use of statistical constructs such as binning and linear regression to quantify relationships between variables and hypothesize underlying biological mechanisms based on it. We discuss several such examples in relation to single-cell data and cellular growth. In particular, we show instances where what appears to be ordinary use of these statistical methods leads to incorrect conclusions such as growth being non-exponential as opposed to exponential and vice versa. We propose that the data analysis and its interpretation should be done in the context of a generative model, if possible. In this way, the statistical methods can be validated either analytically or against synthetic data generated via the use of the model, leading to a consistent method for inferring biological mechanisms from data. On applying the validated methods of data analysis to infer cellular growth on our experimental data, we find the growth of length in E. coli to be non-exponential. Our analysis shows that in the later stages of the cell cycle the growth rate is faster than exponential.

Data availability

All data generated during this study are deposited in Dataverse-:Kar, Prathitha; Tiruvadi-Krishnan, Sriram; Männik, Jaana; Männik, Jaan; Amir, Ariel, 2021, "Distinguishing different modes of growth using single-cell data", https://doi.org/10.7910/DVN/BNQUDW, Harvard Dataverse, V1

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Prathitha Kar

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4091-6860
  2. Sriram Tiruvadi-Krishnan

    Department of Physics and Astronomy, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jaana Männik

    Department of Physics and Astronomy, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jaan Männik

    Department of Physics and Astronomy, University of Tennessee, Knoxville, United States
    For correspondence
    jmannik@utk.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Ariel Amir

    Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    For correspondence
    arielamir@seas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2611-0139

Funding

US-Israel BSF Research Grant (2017004)

  • Jaan Männik

National Institutes of Health (R01GM127413)

  • Jaan Männik

National Science Foundation (NSF CAREER 1752024)

  • Ariel Amir

National Science Foundation (NSF award 1806818)

  • Prathitha Kar

National Institutes of Health (NIH grant 103346)

  • Prathitha Kar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,123
    views
  • 370
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prathitha Kar
  2. Sriram Tiruvadi-Krishnan
  3. Jaana Männik
  4. Jaan Männik
  5. Ariel Amir
(2021)
Distinguishing different modes of growth using single-cell data
eLife 10:e72565.
https://doi.org/10.7554/eLife.72565

Share this article

https://doi.org/10.7554/eLife.72565

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Louna Fruchard, Anamaria Babosan ... Zeynep Baharoglu
    Research Article

    Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). tgt is required for optimal growth of Vibrio cholerae in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of tgt. RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate tgt expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS's antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium's own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.