Distinguishing different modes of growth using single-cell data

  1. Prathitha Kar
  2. Sriram Tiruvadi-Krishnan
  3. Jaana Männik
  4. Jaan Männik  Is a corresponding author
  5. Ariel Amir  Is a corresponding author
  1. Harvard University, United States
  2. University of Tennessee, United States

Abstract

Collection of high-throughput data has become prevalent in biology. Large datasets allow the use of statistical constructs such as binning and linear regression to quantify relationships between variables and hypothesize underlying biological mechanisms based on it. We discuss several such examples in relation to single-cell data and cellular growth. In particular, we show instances where what appears to be ordinary use of these statistical methods leads to incorrect conclusions such as growth being non-exponential as opposed to exponential and vice versa. We propose that the data analysis and its interpretation should be done in the context of a generative model, if possible. In this way, the statistical methods can be validated either analytically or against synthetic data generated via the use of the model, leading to a consistent method for inferring biological mechanisms from data. On applying the validated methods of data analysis to infer cellular growth on our experimental data, we find the growth of length in E. coli to be non-exponential. Our analysis shows that in the later stages of the cell cycle the growth rate is faster than exponential.

Data availability

All data generated during this study are deposited in Dataverse-:Kar, Prathitha; Tiruvadi-Krishnan, Sriram; Männik, Jaana; Männik, Jaan; Amir, Ariel, 2021, "Distinguishing different modes of growth using single-cell data", https://doi.org/10.7910/DVN/BNQUDW, Harvard Dataverse, V1

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Prathitha Kar

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4091-6860
  2. Sriram Tiruvadi-Krishnan

    Department of Physics and Astronomy, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jaana Männik

    Department of Physics and Astronomy, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jaan Männik

    Department of Physics and Astronomy, University of Tennessee, Knoxville, United States
    For correspondence
    jmannik@utk.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Ariel Amir

    Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    For correspondence
    arielamir@seas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2611-0139

Funding

US-Israel BSF Research Grant (2017004)

  • Jaan Männik

National Institutes of Health (R01GM127413)

  • Jaan Männik

National Science Foundation (NSF CAREER 1752024)

  • Ariel Amir

National Science Foundation (NSF award 1806818)

  • Prathitha Kar

National Institutes of Health (NIH grant 103346)

  • Prathitha Kar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,082
    views
  • 364
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prathitha Kar
  2. Sriram Tiruvadi-Krishnan
  3. Jaana Männik
  4. Jaan Männik
  5. Ariel Amir
(2021)
Distinguishing different modes of growth using single-cell data
eLife 10:e72565.
https://doi.org/10.7554/eLife.72565

Share this article

https://doi.org/10.7554/eLife.72565

Further reading

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Clément Mazeaud, Stefan Pfister ... Laurent Chatel-Chaix
    Research Article

    Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3’ nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.