Emergence of a geometric pattern of cell fates from tissue-scale mechanics in the Drosophila eye

  1. Kevin D Gallagher
  2. Madhav Mani  Is a corresponding author
  3. Richard W Carthew  Is a corresponding author
  1. Northwestern University, United States

Abstract

Pattern formation of biological structures involves the arrangement of different types of cells in an ordered spatial configuration. In this study, we investigate the mechanism of patterning the Drosophila eye epithelium into a precise triangular grid of photoreceptor clusters called ommatidia. Previous studies had led to a long-standing biochemical model whereby a reaction-diffusion process is templated by recently formed ommatidia to propagate a molecular prepattern across the eye. Here, we find that the templating mechanism is instead, mechanochemical in origin; newly born columns of differentiating ommatidia serve as a template to spatially pattern flows that move epithelial cells into position to form each new column of ommatidia. Cell flow is generated by a source and sink, corresponding to narrow zones of cell dilation and contraction respectively, that straddle the growing wavefront of ommatidia. The newly formed lattice grid of ommatidia cells are immobile, deflecting and focusing the flow of other cells. Thus, the self-organization of a regular pattern of cell fates in an epithelium is mechanically driven.

Data availability

All imaging data has been deposited in Dryad (doi:10.5061/dryad.f4qrfj6wp).

The following data sets were generated

Article and author information

Author details

  1. Kevin D Gallagher

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Madhav Mani

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    madhav.mani@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard W Carthew

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    r-carthew@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0343-0156

Funding

National Institutes of Health (R35GM118144)

  • Richard W Carthew

National Science Foundation (1764421)

  • Madhav Mani
  • Richard W Carthew

Simons Foundation (597491)

  • Madhav Mani
  • Richard W Carthew

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gallagher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,572
    views
  • 553
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin D Gallagher
  2. Madhav Mani
  3. Richard W Carthew
(2022)
Emergence of a geometric pattern of cell fates from tissue-scale mechanics in the Drosophila eye
eLife 11:e72806.
https://doi.org/10.7554/eLife.72806

Share this article

https://doi.org/10.7554/eLife.72806

Further reading

    1. Developmental Biology
    Pablo Sanchez Bosch, Bomsoo Cho, Jeffrey D Axelrod
    Research Article

    The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. ‘Would-be’ winners that lack Fmi are unable to overproliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Paolo Petazzi, Telma Ventura ... Antonella Fidanza
    Tools and Resources

    A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors. We first identified nine candidate TFs that we predicted to be involved in blood cell emergence during development, then generated tagged gRNAs directed to the transcriptional start site of these TFs that could also be detected during single-cell RNA sequencing (scRNAseq). iCRISPRa activation of these endogenous TFs resulted in a significant expansion of arterial-fated endothelial cells expressing high levels of IGFBP2, and our analysis indicated that IGFBP2 is involved in the remodelling of metabolic activity during in vitro endothelial to haematopoietic transition. As well as providing fundamental new insights into the mechanisms of haematopoietic differentiation, the broader applicability of iCRISPRa provides a valuable tool for studying dynamic processes in development and for recapitulating abnormal phenotypes characterised by ectopic activation of specific endogenous gene expression in a wide range of systems.