Lactoferricins impair the cytosolic membrane of Escherichia coli within a few seconds and accumulate inside the cell

  1. Enrico Federico Semeraro  Is a corresponding author
  2. Lisa Marx
  3. Johannes Mandl
  4. Ilse Letofsky-Papst
  5. Claudia Mayrhofer
  6. Moritz PK Frewein
  7. Haden L. Scott
  8. Sylvain Prévost
  9. Helmut Bergler
  10. Karl Lohner
  11. Georg Pabst  Is a corresponding author
  1. University of Graz, Austria
  2. Graz University of Technology, Austria
  3. Institut Laue-Langevin, France
  4. University of Tennessee at Knoxville, United States

Abstract

We report the real-time response of E. coli to lactoferricin-derived antimicrobial peptides (AMPs) on length-scales bridging microscopic cell-sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multi-scale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than three seconds-much faster than previously considered. Final intracellular AMP concentrations of ~ 80 to 100 mM suggest an efficient obstruction of physiologically important processes as primary cause for bacterial killing. On the other hand, damage of the cell envelope and leakage occurred also at sublethal peptide concentrations, thus emerging as a collateral effect of AMP activity that does not kill the bacteria. This implies that the impairment of the membrane barrier is a necessary but not sufficient condition for microbial killing by lactoferricins. The most efficient AMP studied exceeds others in both speed of permeabilizing membranes and lowest intracellular peptide concentration needed to inhibit bacterial growth.

Data availability

The current manuscript is a biophysical study, reporting data analysis of scattering data and peptide partitioning assays in vitro. All relevant data are included and plotted in the manuscript.In addition SANS raw data are accessible (DOI in Methods and Materials section).The modelling code for data analysis consists of a standard chi-squared minimization algorithm. The implemented analytical functions are described in the Methods and Materials section of the manuscript.

Article and author information

Author details

  1. Enrico Federico Semeraro

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    For correspondence
    enrico.semeraro@uni-graz.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6096-1108
  2. Lisa Marx

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Johannes Mandl

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Ilse Letofsky-Papst

    Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Claudia Mayrhofer

    Center for Electron Microscopy, Graz University of Technology, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Moritz PK Frewein

    Institut Laue-Langevin, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0329-5305
  7. Haden L. Scott

    Center for Environmental Biotechnology, University of Tennessee at Knoxville, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sylvain Prévost

    Institut Laue-Langevin, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6008-1987
  9. Helmut Bergler

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7724-309X
  10. Karl Lohner

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Georg Pabst

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    For correspondence
    georg.pabst@uni-graz.at
    Competing interests
    The authors declare that no competing interests exist.

Funding

Austrian Science Fund (P 30921)

  • Karl Lohner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Semeraro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 937
    views
  • 255
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Enrico Federico Semeraro
  2. Lisa Marx
  3. Johannes Mandl
  4. Ilse Letofsky-Papst
  5. Claudia Mayrhofer
  6. Moritz PK Frewein
  7. Haden L. Scott
  8. Sylvain Prévost
  9. Helmut Bergler
  10. Karl Lohner
  11. Georg Pabst
(2022)
Lactoferricins impair the cytosolic membrane of Escherichia coli within a few seconds and accumulate inside the cell
eLife 11:e72850.
https://doi.org/10.7554/eLife.72850

Share this article

https://doi.org/10.7554/eLife.72850

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Tingting Yang, Marko S Chavez ... Mohamed Y El-Naggar
    Research Article

    Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current–voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope’s nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.