Heavy isotope labeling and mass spectrometry reveal unexpected remodeling of bacterial cell wall expansion in response to drugs

  1. Heiner Atze
  2. Yucheng Liang
  3. Jean-Emmanuel Hugonnet
  4. Arnaud Gutierrez
  5. Filippo Rusconi  Is a corresponding author
  6. Michel Arthur  Is a corresponding author
  1. INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, France
  2. Sorbonne Université-INSERM, France
  3. PAPPSO, Universite Paris-Saclay, INRAE, CNRS, France

Abstract

Antibiotics of the β-lactam (penicillin) family inactivate target enzymes called D,D-transpeptidases or penicillin-binding proteins (PBPs) that catalyze the last cross-linking step of peptidoglycan synthesis. The resulting net-like macromolecule is the essential component of bacterial cell walls that sustains the osmotic pressure of the cytoplasm. In Escherichia coli, bypass of PBPs by the YcbB L,D-transpeptidase leads to resistance to these drugs. We developed a new method based on heavy isotope labeling and mass spectrometry to elucidate PBP- and YcbB-mediated peptidoglycan polymerization. PBPs and YcbB similarly participated in single-strand insertion of glycan chains into the expanding bacterial side wall. This absence of any transpeptidase-specific signature suggests that the peptidoglycan expansion mode is determined by other components of polymerization complexes. YcbB did mediate β-lactam resistance by insertion of multiple strands that were exclusively cross-linked to existing tripeptide-containing acceptors. We propose that this undocumented mode of polymerization depends upon accumulation of linear glycan chains due to PBP inactivation, formation of tripeptides due to cleavage of existing cross-links by a β-lactam-insensitive endopeptidase, and concerted cross-linking by YcbB.

Data availability

MS/MS spectra have been provided in Supplementary data file.The software developments required to predict and analyze the labeled/unlabeled muropeptide ions isotopic clusters either in MS or MS/MS experiments are hosted at https://gitlab.com/kantundpeterpan/masseltof and published under a Free Software license.

Article and author information

Author details

  1. Heiner Atze

    INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1497-6373
  2. Yucheng Liang

    Sorbonne Université-INSERM, PARIS, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean-Emmanuel Hugonnet

    INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Arnaud Gutierrez

    INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Filippo Rusconi

    PAPPSO, Universite Paris-Saclay, INRAE, CNRS, Paris, France
    For correspondence
    filippo.rusconi@universite-paris-saclay.fr
    Competing interests
    The authors declare that no competing interests exist.
  6. Michel Arthur

    INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
    For correspondence
    michel.arthur@crc.jussieu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1007-636X

Funding

Agence Nationale de la Recherche (ANR-16-CE11-0030-12)

  • Heiner Atze
  • Michel Arthur

National Institute of Allergy and Infectious Diseases (R56AI045626)

  • Yucheng Liang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Publication history

  1. Preprint posted: August 6, 2021 (view preprint)
  2. Received: August 6, 2021
  3. Accepted: June 9, 2022
  4. Accepted Manuscript published: June 9, 2022 (version 1)
  5. Version of Record published: July 1, 2022 (version 2)

Copyright

© 2022, Atze et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 861
    Page views
  • 306
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heiner Atze
  2. Yucheng Liang
  3. Jean-Emmanuel Hugonnet
  4. Arnaud Gutierrez
  5. Filippo Rusconi
  6. Michel Arthur
(2022)
Heavy isotope labeling and mass spectrometry reveal unexpected remodeling of bacterial cell wall expansion in response to drugs
eLife 11:e72863.
https://doi.org/10.7554/eLife.72863

Further reading

    1. Microbiology and Infectious Disease
    Nikos Nikolopoulos, Renata C Matos ... François Leulier
    Research Article Updated

    Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster’s juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.

    1. Microbiology and Infectious Disease
    Sneha Agrawal, Nichole A Broderick
    Insight

    Elucidating the role of one of the proteins produced by Lactiplantibacillus plantarum reveals a new molecule that allows this gut bacterium to support the development of fruit fly larvae.