Charting brain growth and aging at high spatial precision
Abstract
Defining reference models for population variation, and the ability to study individual deviations is essential for understanding inter-individual variability and its relation to the onset and progression of medical conditions. In this work, we assembled a reference cohort of neuroimaging data from 82 sites (N=58,836; ages 2-100) and use normative modeling to characterize lifespan trajectories of cortical thickness and subcortical volume. Models are validated against a manually quality checked subset (N=24,354) and we provide an interface for transferring to new data sources. We showcase the clinical value by applying the models to a transdiagnostic psychiatric sample (N=1,985), showing they can be used to quantify variability underlying multiple disorders whilst also refining case-control inferences. These models will be augmented with additional samples and imaging modalities as they become available. This provides a common reference platform to bind results from different studies and ultimately paves the way for personalized clinical decision making.
Data availability
All pre-trained models and code for transferring to new sites are shared online via GitHub (https://github.com/predictive-clinical-neuroscience/braincharts). We have also shared the models on Zenodo (https://zenodo.org/record/5535467#.YVRECmYzZhF).
-
ABIDEhttp://fcon_1000.projects.nitrc.org/indi/abide/.
-
ADHD200https://fcon_1000.projects.nitrc.org/indi/adhd200/.
-
CAMCANhttps://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/.
-
CMI-HBNhttp://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/About.html.
-
HCP-Aginghttps://nda.nih.gov/general-query.html?q=query=featured-datasets:HCP%20Aging%20and%20Development.
-
HCP-Developmenthttps://nda.nih.gov/general-query.html?q=query=featured-datasets:HCP%20Aging%20and%20Development.
-
HCP-Early Psychosishttps://nda.nih.gov/general-query.html?q=query=featured-datasets:Connectomes%20Related%20to%20Human%20Disease.
-
NKI-RShttp://fcon_1000.projects.nitrc.org/indi/enhanced/access.html.
-
Oasishttps://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-Series-of-Imaging-Studies-OASIS-Cross.
-
Philadelphia Neurodevelopmental Cohorthttps://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html.
Article and author information
Author details
Funding
H2020 European Research Council (10100118)
- Andre F Marquand
Medical Research Council (G0902304)
- Roland Zahn
National Institute of Mental Health (K23MH108823)
- Ivy F Tso
National Institute on Deafness and Other Communication Disorders (R01DC011277)
- Soo-Eun Chang
National Institute of Mental Health (R01MH107741)
- Chandra Sripada
Michigan Institute for Clinical and Health Research (UL1TR002240)
- Elizabeth R Duval
National Institute of Mental Health (UG3MH114249)
- S Alexandra Burt
- Luke Hyde
Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD093334)
- S Alexandra Burt
- Luke Hyde
H2020 European Research Council (802998)
- Lars T Westlye
Wellcome Trust (215698/Z/19/Z)
- Andre F Marquand
Wellcome Trust (098369/Z/12/Z)
- Christian Beckmann
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (VIDI grant 016.156.415)
- Andre F Marquand
National Institute of Mental Health (R01MH104438)
- David Amaral
- Christine Wu Nordahl
National Institute of Mental Health (R01MH103371)
- David Amaral
- Christine Wu Nordahl
Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50 HD093079)
- David Amaral
- Christine Wu Nordahl
H2020 Marie Skłodowska-Curie Actions (895011)
- Thomas Wolfers
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Ethical approval for the public data were provided by the relevant local research authorities for the studies contributing data. For full details see the main study publications given in the main text. For all clinical studies, approval was obtained via the local ethical review authorities, i.e.: TOP: Regional Committee for Medical & Health Research Ethics South East Norway. Approval number: 2009/2485- C, KCL: South Manchester NHS National Research Ethics Service. Approval number: 07/H1003/194. Delta: The local ethics committee of the Academic Medical Center of the University of Amsterdam (AMC-METC) Nr.:11/050, UMich_IMPS: University of Michigan Institution Review Board HUM00088188, UMich_SZG: University of Michigan Institution Review Board HUM00080457, UMich_MLS: University of Michigan Institution Review Board HUM00040642, UMich_CWS: MSU Biomedical and Health Institutional Review Board (BIIRB) IRB#09-810, UMich_MTWiNS: University of Michigan Institution Review HUM00163965, UCDavis: University of California Davis Institutional Review Board IRB ID: 220915, 592866, 1097084.
Copyright
© 2022, Rutherford et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 86
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.
-
- Neuroscience
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.