Charting brain growth and aging at high spatial precision
Abstract
Defining reference models for population variation, and the ability to study individual deviations is essential for understanding inter-individual variability and its relation to the onset and progression of medical conditions. In this work, we assembled a reference cohort of neuroimaging data from 82 sites (N=58,836; ages 2-100) and use normative modeling to characterize lifespan trajectories of cortical thickness and subcortical volume. Models are validated against a manually quality checked subset (N=24,354) and we provide an interface for transferring to new data sources. We showcase the clinical value by applying the models to a transdiagnostic psychiatric sample (N=1,985), showing they can be used to quantify variability underlying multiple disorders whilst also refining case-control inferences. These models will be augmented with additional samples and imaging modalities as they become available. This provides a common reference platform to bind results from different studies and ultimately paves the way for personalized clinical decision making.
Data availability
All pre-trained models and code for transferring to new sites are shared online via GitHub (https://github.com/predictive-clinical-neuroscience/braincharts). We have also shared the models on Zenodo (https://zenodo.org/record/5535467#.YVRECmYzZhF).
-
ABIDEhttp://fcon_1000.projects.nitrc.org/indi/abide/.
-
ADHD200https://fcon_1000.projects.nitrc.org/indi/adhd200/.
-
CAMCANhttps://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/.
-
CMI-HBNhttp://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/About.html.
-
HCP-Aginghttps://nda.nih.gov/general-query.html?q=query=featured-datasets:HCP%20Aging%20and%20Development.
-
HCP-Developmenthttps://nda.nih.gov/general-query.html?q=query=featured-datasets:HCP%20Aging%20and%20Development.
-
HCP-Early Psychosishttps://nda.nih.gov/general-query.html?q=query=featured-datasets:Connectomes%20Related%20to%20Human%20Disease.
-
NKI-RShttp://fcon_1000.projects.nitrc.org/indi/enhanced/access.html.
-
Oasishttps://direct.mit.edu/jocn/article/19/9/1498/4427/Open-Access-Series-of-Imaging-Studies-OASIS-Cross.
-
Philadelphia Neurodevelopmental Cohorthttps://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html.
Article and author information
Author details
Funding
H2020 European Research Council (10100118)
- Andre F Marquand
Medical Research Council (G0902304)
- Roland Zahn
National Institute of Mental Health (K23MH108823)
- Ivy F Tso
National Institute on Deafness and Other Communication Disorders (R01DC011277)
- Soo-Eun Chang
National Institute of Mental Health (R01MH107741)
- Chandra Sripada
Michigan Institute for Clinical and Health Research (UL1TR002240)
- Elizabeth R Duval
National Institute of Mental Health (UG3MH114249)
- S Alexandra Burt
- Luke Hyde
Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD093334)
- S Alexandra Burt
- Luke Hyde
H2020 European Research Council (802998)
- Lars T Westlye
Wellcome Trust (215698/Z/19/Z)
- Andre F Marquand
Wellcome Trust (098369/Z/12/Z)
- Christian Beckmann
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (VIDI grant 016.156.415)
- Andre F Marquand
National Institute of Mental Health (R01MH104438)
- David Amaral
- Christine Wu Nordahl
National Institute of Mental Health (R01MH103371)
- David Amaral
- Christine Wu Nordahl
Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50 HD093079)
- David Amaral
- Christine Wu Nordahl
H2020 Marie Skłodowska-Curie Actions (895011)
- Thomas Wolfers
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Ethical approval for the public data were provided by the relevant local research authorities for the studies contributing data. For full details see the main study publications given in the main text. For all clinical studies, approval was obtained via the local ethical review authorities, i.e.: TOP: Regional Committee for Medical & Health Research Ethics South East Norway. Approval number: 2009/2485- C, KCL: South Manchester NHS National Research Ethics Service. Approval number: 07/H1003/194. Delta: The local ethics committee of the Academic Medical Center of the University of Amsterdam (AMC-METC) Nr.:11/050, UMich_IMPS: University of Michigan Institution Review Board HUM00088188, UMich_SZG: University of Michigan Institution Review Board HUM00080457, UMich_MLS: University of Michigan Institution Review Board HUM00040642, UMich_CWS: MSU Biomedical and Health Institutional Review Board (BIIRB) IRB#09-810, UMich_MTWiNS: University of Michigan Institution Review HUM00163965, UCDavis: University of California Davis Institutional Review Board IRB ID: 220915, 592866, 1097084.
Copyright
© 2022, Rutherford et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 8,037
- views
-
- 1,172
- downloads
-
- 95
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Avoiding distraction by salient yet irrelevant stimuli is critical when accomplishing daily tasks. One possible mechanism to accomplish this is by suppressing stimuli that may be distracting such that they no longer compete for attention. While the behavioral benefits of distractor suppression are well established, its neural underpinnings are not yet fully understood. In a functional MRI (fMRI) study, we examined whether and how sensory responses in early visual areas show signs of distractor suppression after incidental learning of spatial statistical regularities. Participants were exposed to an additional singleton task where, unbeknownst to them, one location more frequently contained a salient distractor. We analyzed whether visual responses in terms of fMRI BOLD were modulated by this distractor predictability. Our findings indicate that implicit spatial priors shape sensory processing even at the earliest stages of cortical visual processing, evident in early visual cortex as a suppression of stimuli at locations which frequently contained distracting information. Notably, while this suppression was spatially (receptive field) specific, it did extend to nearby neutral locations and occurred regardless of whether distractors, nontarget items, or targets were presented at this location, suggesting that suppression arises before stimulus identification. Crucially, we observed similar spatially specific neural suppression even if search was only anticipated, but no search display was presented. Our results highlight proactive modulations in early visual cortex, where potential distractions are suppressed preemptively, before stimulus onset, based on learned expectations. Combined, our study underscores how the brain leverages implicitly learned prior knowledge to optimize sensory processing and attention allocation.
-
- Immunology and Inflammation
- Neuroscience
Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer’s disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.