Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes

  1. Angela Kim
  2. Jakob G Knudsen
  3. Joseph C Madara
  4. Anna Benrick
  5. Thomas G Hill
  6. Lina Abdul Kadir
  7. Joely A Kellard
  8. Lisa Mellander
  9. Caroline Miranda
  10. Haopeng Lin
  11. Timothy James
  12. Kinga Suba
  13. Aliya F Spigelman
  14. Yanling Wu
  15. Patrick E MacDonald
  16. Ingrid Wernstedt Asterholm
  17. Tore Magnussen
  18. Mikkel Christensen
  19. Tina Vilsbøll
  20. Victoria Salem
  21. Filip K Knop
  22. Patrik Rorsman
  23. Bradford B Lowell
  24. Linford JB Briant  Is a corresponding author
  1. Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, United States
  2. Program in Neuroscience, Harvard Medical School, United States
  3. Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, United Kingdom
  4. Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
  5. Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden
  6. Alberta Diabetes Institute, Li Ka Shing Centre for Health Research Innovation, Canada
  7. Department of Clinical Biochemistry, John Radcliffe, Oxford NHS Trust, United Kingdom
  8. Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom
  9. Center for Clinical Metabolic Research, Gentofte Hospital, Denmark
  10. Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Denmark
  11. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
  12. Steno Diabetes Center Copenhagen, Denmark
  13. Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
  14. Department of Computer Science, University of Oxford, United Kingdom

Decision letter

  1. Weiping Han
    Reviewing Editor; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
  2. Lu Chen
    Senior Editor; Stanford University, United States

Our editorial process produces two outputs: (i) public reviews designed to be posted alongside the preprint for the benefit of readers; (ii) feedback on the manuscript for the authors, including requests for revisions, shown below. We also include an acceptance summary that explains what the editors found interesting or important about the work.

Decision letter after peer review:

Thank you for submitting your article "Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes" for consideration by eLife. Your article has been reviewed by 2 peer reviewers, and the evaluation has been overseen by a Reviewing Editor and Lu Chen as the Senior Editor. The reviewers have opted to remain anonymous.

The reviewers have discussed their reviews with one another, and the Reviewing Editor has drafted this to help you prepare a revised submission.

Essential revisions:

The comments of both reviewers can be addressed via revisions/additions to the text and figures without new experiments.

Reviewer #1 (Recommendations for the authors):

https://doi.org/10.7554/eLife.72919.sa1

Author response

In this manuscript, Angela Kim et al., use a combination of in vitro and in vivo studies to determine how glucose-control of central AVP release controls pancreatic α-cell calcium influx and glucagon secretion to modulate blood glucose homeostasis. The manuscript clearly shows that activation of AVP release from magnocellular AVP neurons stimulates pancreatic islet glucagon secretion. Furthermore, the manuscript finds AVP (measured by circulating Copeptin) is elevated in plasma following insulin induced hypoglycemia, which also activates AVP neuron electrical excitability and calcium entry. To confirm that AVP release stimulates glucagon secretion via islet α-cell Avpr1b activation, both Avpr1b antagonists and an Avpr1b-/- mouse model were utilized. Finally, the manuscript looks at plasma AVP in humans undergoing a hypoglycemic clamp; while this results in AVP release in non-diabetic controls, AVP release is blunted following hypoglycemia in type-1 diabetic patients. Based on an extensive amount of high-quality data, the authors conclude that AVP release from magnocellular AVP neurons is involved in regulating glucagon secretion in response to hypoglycemia. The manuscript is well written and easy to follow. As the exact mechanism that controls glucagon secretion is still unknown, this manuscript adds important information for the diabetes research community detailing the importance of CNS control of islet glucagon secretion through glucose regulated AVP release. Overall, this is an excellent manuscript that will be very useful to the diabetes research community.

https://doi.org/10.7554/eLife.72919.sa2

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angela Kim
  2. Jakob G Knudsen
  3. Joseph C Madara
  4. Anna Benrick
  5. Thomas G Hill
  6. Lina Abdul Kadir
  7. Joely A Kellard
  8. Lisa Mellander
  9. Caroline Miranda
  10. Haopeng Lin
  11. Timothy James
  12. Kinga Suba
  13. Aliya F Spigelman
  14. Yanling Wu
  15. Patrick E MacDonald
  16. Ingrid Wernstedt Asterholm
  17. Tore Magnussen
  18. Mikkel Christensen
  19. Tina Vilsbøll
  20. Victoria Salem
  21. Filip K Knop
  22. Patrik Rorsman
  23. Bradford B Lowell
  24. Linford JB Briant
(2021)
Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes
eLife 10:e72919.
https://doi.org/10.7554/eLife.72919

Share this article

https://doi.org/10.7554/eLife.72919