Abstract

Expression of the AR splice variant, AR-V7, in prostate cancer is correlated with poor patient survival and resistance to AR targeted therapies and taxanes. Currently, there is no specific inhibitor of AR-V7, while the molecular mechanisms regulating its biological function are not well elucidated. Here we report that AR-V7 has unique biological features that functionally differentiate it from canonical AR-fl or from the second most prevalent variant, AR-v567. First, AR-V7 exhibits fast nuclear import kinetics via a pathway distinct from the nuclear localization signal dependent importin-a/b pathway used by AR-fl and AR-v567. We also show that the dimerization box domain, known to mediate AR dimerization and transactivation, is required for AR-V7 nuclear import but not for AR-fl. Once in the nucleus, AR-V7 is transcriptionally active, yet exhibits unusually high intranuclear mobility and transient chromatin interactions, unlike the stable chromatin association of liganded AR-fl. The high intranuclear mobility of AR-V7 together with its high transcriptional output, suggest a Hit-and-Run mode of transcription. Our findings reveal unique mechanisms regulating AR-V7 activity, offering the opportunity to develop selective therapeutic interventions.

Data availability

All data generated or analysed during this study are included in the manuscript. Source data files have been provided for figure 6.

Article and author information

Author details

  1. Seaho Kim

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. CheukMan C Au

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohd Azrin Bin Jamalruddin

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Naira Essam Abou-Ghali

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eiman Mukhtar

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luigi Portella

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adeline Berger

    Department of Pathology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Daniel Worroll III

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-676X
  9. Prerna Vatsa

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David S Rickman

    Department of Pathology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. David M Nanus

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Paraskevi Giannakakou

    Department of Medicine, Weill Cornell Medical College, New York, United States
    For correspondence
    pag2015@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7378-262X

Funding

National Cancer Institute (NIH T32 CA203702)

  • Seaho Kim

National Cancer Institute (NIH T32 CA062948)

  • CheukMan C Au

National Cancer Institute (R01CA137020)

  • Paraskevi Giannakakou

National Cancer Institute (R21CA216800)

  • Paraskevi Giannakakou

National Cancer Institute (R01CA228512)

  • Paraskevi Giannakakou

National Cancer Institute (R01CA179100)

  • David S Rickman
  • Paraskevi Giannakakou

U.S. Department of Defense (W81XWH-17-1-0162)

  • Adeline Berger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,453
    views
  • 553
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seaho Kim
  2. CheukMan C Au
  3. Mohd Azrin Bin Jamalruddin
  4. Naira Essam Abou-Ghali
  5. Eiman Mukhtar
  6. Luigi Portella
  7. Adeline Berger
  8. Daniel Worroll III
  9. Prerna Vatsa
  10. David S Rickman
  11. David M Nanus
  12. Paraskevi Giannakakou
(2022)
AR-V7 exhibits non-canonical mechanisms of nuclear import and chromatin engagement in castrate-resistant prostate cancer
eLife 11:e73396.
https://doi.org/10.7554/eLife.73396

Share this article

https://doi.org/10.7554/eLife.73396

Further reading

    1. Cancer Biology
    Pierluigi Scerbo, Benjamin Tisserand ... Bertrand Ducos
    Research Article

    Why does a normal cell possibly harboring genetic mutations in oncogene or tumor suppressor genes becomes malignant and develops a tumor is a subject of intense debate. Various theories have been proposed but their experimental test has been hampered by the unpredictable and improbable malignant transformation of single cells. Here, using an optogenetic approach we permanently turn on an oncogene (KRASG12V) in a single cell of a zebrafish brain that, only in synergy with the transient co-activation of a reprogramming factor (VENTX/NANOG/OCT4), undergoes a deterministic malignant transition and robustly and reproducibly develops within 6 days into a full-blown tumor. The controlled way in which a single cell can thus be manipulated to give rise to cancer lends support to the ‘ground state theory of cancer initiation’ through ‘short-range dispersal’ of the first malignant cells preceding tumor growth.

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.