Abstract

Expression of the AR splice variant, AR-V7, in prostate cancer is correlated with poor patient survival and resistance to AR targeted therapies and taxanes. Currently, there is no specific inhibitor of AR-V7, while the molecular mechanisms regulating its biological function are not well elucidated. Here we report that AR-V7 has unique biological features that functionally differentiate it from canonical AR-fl or from the second most prevalent variant, AR-v567. First, AR-V7 exhibits fast nuclear import kinetics via a pathway distinct from the nuclear localization signal dependent importin-a/b pathway used by AR-fl and AR-v567. We also show that the dimerization box domain, known to mediate AR dimerization and transactivation, is required for AR-V7 nuclear import but not for AR-fl. Once in the nucleus, AR-V7 is transcriptionally active, yet exhibits unusually high intranuclear mobility and transient chromatin interactions, unlike the stable chromatin association of liganded AR-fl. The high intranuclear mobility of AR-V7 together with its high transcriptional output, suggest a Hit-and-Run mode of transcription. Our findings reveal unique mechanisms regulating AR-V7 activity, offering the opportunity to develop selective therapeutic interventions.

Data availability

All data generated or analysed during this study are included in the manuscript. Source data files have been provided for figure 6.

Article and author information

Author details

  1. Seaho Kim

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. CheukMan C Au

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohd Azrin Bin Jamalruddin

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Naira Essam Abou-Ghali

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eiman Mukhtar

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luigi Portella

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adeline Berger

    Department of Pathology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Daniel Worroll III

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-676X
  9. Prerna Vatsa

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David S Rickman

    Department of Pathology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. David M Nanus

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Paraskevi Giannakakou

    Department of Medicine, Weill Cornell Medical College, New York, United States
    For correspondence
    pag2015@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7378-262X

Funding

National Cancer Institute (NIH T32 CA203702)

  • Seaho Kim

National Cancer Institute (NIH T32 CA062948)

  • CheukMan C Au

National Cancer Institute (R01CA137020)

  • Paraskevi Giannakakou

National Cancer Institute (R21CA216800)

  • Paraskevi Giannakakou

National Cancer Institute (R01CA228512)

  • Paraskevi Giannakakou

National Cancer Institute (R01CA179100)

  • David S Rickman
  • Paraskevi Giannakakou

U.S. Department of Defense (W81XWH-17-1-0162)

  • Adeline Berger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,256
    views
  • 528
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seaho Kim
  2. CheukMan C Au
  3. Mohd Azrin Bin Jamalruddin
  4. Naira Essam Abou-Ghali
  5. Eiman Mukhtar
  6. Luigi Portella
  7. Adeline Berger
  8. Daniel Worroll III
  9. Prerna Vatsa
  10. David S Rickman
  11. David M Nanus
  12. Paraskevi Giannakakou
(2022)
AR-V7 exhibits non-canonical mechanisms of nuclear import and chromatin engagement in castrate-resistant prostate cancer
eLife 11:e73396.
https://doi.org/10.7554/eLife.73396

Share this article

https://doi.org/10.7554/eLife.73396

Further reading

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Gabriella O Estevam, Edmond M Linossi ... James S Fraser
    Research Article

    MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild-type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase ⍺C-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.

    1. Cancer Biology
    Ruijing Tang, Luobin Guo ... Xiaolong Liu
    Research Article

    Tumor neoantigen peptide vaccines hold potential for boosting cancer immunotherapy, yet efficiently co-delivering peptides and adjuvants to antigen-presenting cells in vivo remains challenging. Virus-like particle (VLP), which is a kind of multiprotein structure organized as virus, can deliver therapeutic substances into cells and stimulate immune response. However, the weak targeted delivery of VLP in vivo and its susceptibility to neutralization by antibodies hinder their clinical applications. Here, we first designed a novel protein carrier using the mammalian-derived capsid protein PEG10, which can self-assemble into endogenous VLP (eVLP) with high protein loading and transfection efficiency. Then, an engineered tumor vaccine, named ePAC, was developed by packaging genetically encoded neoantigen into eVLP with further modification of CpG-ODN on its surface to serve as an adjuvant and targeting unit to dendritic cells (DCs). Significantly, ePAC can efficiently target and transport neoantigens to DCs, and promote DCs maturation to induce neoantigen-specific T cells. Moreover, in mouse orthotopic liver cancer and humanized mouse tumor models, ePAC combined with anti-TIM-3 exhibited remarkable antitumor efficacy. Overall, these results support that ePAC could be safely utilized as cancer vaccines for antitumor therapy, showing significant potential for clinical translation.