Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases

  1. Jiaqi Fu
  2. Mowei Zhou
  3. Marina A Gritsenko
  4. Ernesto S Nakayasu
  5. Lei Song  Is a corresponding author
  6. Zhao-Qing Luo  Is a corresponding author
  1. Purdue University, United States
  2. Pacific Northwest National Laboratory, United States
  3. Jilin University, China

Abstract

The intracellular pathogen Legionella pneumophila delivers more than 330 effectors into host cells by its Dot/Icm secretion system. Those effectors direct the biogenesis of the Legionella-containing vacuole (LCV) that permits its intracellular survival and replication. It has long been documented that the LCV is associated with mitochondria and a number of Dot/Icm effectors have been shown to target to this organelle. Yet, the biochemical function and host cell target of most of these effectors remain unknown. Here, we found that the Dot/Icm substrate Ceg3 (Lpg0080) is a mono-ADP-ribosyltransferase that localizes to the mitochondria in host cells where it attacks ADP/ATP translocases by ADP-ribosylation, and blunts their ADP/ATP exchange activity. The modification occurs on the second arginine residue in the -RRRMMM- element, which is conserved among all known ADP/ATP carriers from different organisms. Our results reveal modulation of host energy metabolism as a virulence mechanism for L. pneumophila.

Data availability

We have included all data to support our conclusions in the manuscript.

Article and author information

Author details

  1. Jiaqi Fu

    Department of Biological Science, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0081-6133
  2. Mowei Zhou

    Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marina A Gritsenko

    Biological Science Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ernesto S Nakayasu

    Biological Science Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lei Song

    Department of Respiratory Medicine, Jilin University, Changchun, China
    For correspondence
    lsong@jlu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4115-065X
  6. Zhao-Qing Luo

    Department of Biological Science, Purdue University, West Lafayette, United States
    For correspondence
    luoz@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8890-6621

Funding

National Institute of Health (R01AI127465)

  • Zhao-Qing Luo

Jilin Science and Technology Agency (20200403117SF)

  • Lei Song

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sophie Helaine, Harvard Medical School, United States

Publication history

  1. Received: September 4, 2021
  2. Preprint posted: September 17, 2021 (view preprint)
  3. Accepted: January 26, 2022
  4. Accepted Manuscript published: January 27, 2022 (version 1)
  5. Version of Record published: February 7, 2022 (version 2)
  6. Version of Record updated: February 23, 2022 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 923
    Page views
  • 218
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiaqi Fu
  2. Mowei Zhou
  3. Marina A Gritsenko
  4. Ernesto S Nakayasu
  5. Lei Song
  6. Zhao-Qing Luo
(2022)
Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases
eLife 11:e73611.
https://doi.org/10.7554/eLife.73611

Further reading

    1. Microbiology and Infectious Disease
    Lucy Chou-Zheng, Asma Hatoum-Aslan
    Research Advance

    CRISPR-Cas systems are a family of adaptive immune systems that use small CRISPR RNAs (crRNAs) and CRISPR-associated (Cas) nucleases to protect prokaryotes from invading plasmids and viruses (i.e. phages). Type III systems launch a multi-layered immune response that relies upon both Cas and non-Cas cellular nucleases, and although the functions of Cas components have been well described, the identities and roles of non-Cas participants remain poorly understood. Previously, we showed that the Type III-A CRISPR-Cas system in Staphylococcus epidermidis employs two degradosome-associated nucleases, PNPase and RNase J2, to promote crRNA maturation and eliminate invading nucleic acids (Chou-Zheng and Hatoum-Aslan, 2019). Here, we identify RNase R as a third 'housekeeping' nuclease critical for immunity. We show that RNase R works in concert with PNPase to complete crRNA maturation, and identify specific interactions with Csm5, a member of the Type III effector complex, which facilitate nuclease recruitment/stimulation. Further, we demonstrate that RNase R and PNPase are required to maintain robust anti-plasmid immunity, particularly when targeted transcripts are sparse. Altogether, our findings expand the known repertoire of accessory nucleases required for Type III immunity and highlight the remarkable capacity of these systems to interface with diverse cellular pathways to ensure successful defense.

    1. Microbiology and Infectious Disease
    Cecile Berne, Sebastien Zappa, Yves V Brun
    Research Article

    In their natural environment, most bacteria preferentially live as complex surface-attached multicellular colonies called biofilms. Biofilms begin with a few cells adhering to a surface, where they multiply to form a mature colony. When conditions deteriorate, cells can leave the biofilm. This dispersion is thought to be an important process that modifies the overall biofilm architecture and that promotes colonization of new environments. In Caulobacter crescentus biofilms, extracellular DNA (eDNA) is released upon cell death and prevents newborn cells from joining the established biofilm. Thus, eDNA promotes the dispersal of newborn cells and the subsequent colonization of new environments. These observations suggest that eDNA is a cue for sensing detrimental environmental conditions in the biofilm. Here we show that the toxin-antitoxin system (TAS) ParDE4 stimulates cell death in areas of a biofilm with decreased O2 availability. In conditions where O2 availability is low, eDNA concentration is correlated with cell death. Cell dispersal away from biofilms is decreased when parDE4 is deleted, probably due to the lower local eDNA concentration. Expression of parDE4 is positively regulated by O2 and the expression of this operon is decreased in biofilms where O2 availability is low. Thus, a programmed cell death mechanism using an O2-regulated TAS stimulates dispersal away from areas of a biofilm with decreased O2 availability and favors colonization of a new, more hospitable environment.