Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases

  1. Jiaqi Fu
  2. Mowei Zhou
  3. Marina A Gritsenko
  4. Ernesto S Nakayasu
  5. Lei Song  Is a corresponding author
  6. Zhao-Qing Luo  Is a corresponding author
  1. Purdue University, United States
  2. Pacific Northwest National Laboratory, United States
  3. Jilin University, China

Abstract

The intracellular pathogen Legionella pneumophila delivers more than 330 effectors into host cells by its Dot/Icm secretion system. Those effectors direct the biogenesis of the Legionella-containing vacuole (LCV) that permits its intracellular survival and replication. It has long been documented that the LCV is associated with mitochondria and a number of Dot/Icm effectors have been shown to target to this organelle. Yet, the biochemical function and host cell target of most of these effectors remain unknown. Here, we found that the Dot/Icm substrate Ceg3 (Lpg0080) is a mono-ADP-ribosyltransferase that localizes to the mitochondria in host cells where it attacks ADP/ATP translocases by ADP-ribosylation, and blunts their ADP/ATP exchange activity. The modification occurs on the second arginine residue in the -RRRMMM- element, which is conserved among all known ADP/ATP carriers from different organisms. Our results reveal modulation of host energy metabolism as a virulence mechanism for L. pneumophila.

Data availability

We have included all data to support our conclusions in the manuscript.

Article and author information

Author details

  1. Jiaqi Fu

    Department of Biological Science, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0081-6133
  2. Mowei Zhou

    Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marina A Gritsenko

    Biological Science Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ernesto S Nakayasu

    Biological Science Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lei Song

    Department of Respiratory Medicine, Jilin University, Changchun, China
    For correspondence
    lsong@jlu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4115-065X
  6. Zhao-Qing Luo

    Department of Biological Science, Purdue University, West Lafayette, United States
    For correspondence
    luoz@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8890-6621

Funding

National Institute of Health (R01AI127465)

  • Zhao-Qing Luo

Jilin Science and Technology Agency (20200403117SF)

  • Lei Song

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,626
    views
  • 286
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiaqi Fu
  2. Mowei Zhou
  3. Marina A Gritsenko
  4. Ernesto S Nakayasu
  5. Lei Song
  6. Zhao-Qing Luo
(2022)
Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases
eLife 11:e73611.
https://doi.org/10.7554/eLife.73611

Share this article

https://doi.org/10.7554/eLife.73611

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Microbiology and Infectious Disease
    Vandana Singh, Scot P Ouellette
    Research Article

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.