m6A modifications regulate intestinal immunity and rotavirus infection

  1. Anmin Wang
  2. Wanyiin Tao
  3. Jiyu Tong
  4. Juanzi Gao
  5. Jinghao Wang
  6. Gaopeng Hou
  7. Chen Qian
  8. Guorong Zhang
  9. Runzhi Li
  10. Decai Wang
  11. Xingxing Ren
  12. Kaiguang Zhang
  13. Siyuan Ding
  14. Richard A Flavell
  15. Huabing Li
  16. Wen Pan  Is a corresponding author
  17. Shu Zhu  Is a corresponding author
  1. University of Science and Technology of China, China
  2. Shanghai Jiao Tong University, China
  3. Washington University in St. Louis, United States
  4. Yale University, United States

Abstract

N6-methyladenosine (m6A) is an abundant mRNA modification and affects many biological processes. However, how m6A levels are regulated during physiological or pathological processes such as virus infections, and the in vivo function of m6A in the intestinal immune defense against virus infections are largely unknown. Here, we uncover a novel antiviral function of m6A modification during rotavirus (RV) infection in small bowel intestinal epithelial cells (IECs). We found that rotavirus infection induced global m6A modifications on mRNA transcripts by down-regulating the m6a eraser ALKBH5. Mice lacking the m6A writer enzymes METTL3 in IECs (Mettl3ΔIEC) were resistant to RV infection and showed increased expression of interferons (IFNs) and IFN-stimulated genes (ISGs). Using RNA-sequencing and m6A RNA immuno-precipitation (RIP)-sequencing, we identified IRF7, a master regulator of IFN responses, as one of the primary m6A targets during virus infection. In the absence of METTL3, IECs showed increased Irf7 mRNA stability and enhanced type I and III IFN expression. Deficiency in IRF7 attenuated the elevated expression of IFNs and ISGs and restored susceptibility to RV infection in Mettl3ΔIEC mice. Moreover, the global m6A modification on mRNA transcripts declined with age in mice, with a significant drop from 2 weeks to 3 weeks post birth, which likely has broad implications for the development of intestinal immune system against enteric viruses early in life. Collectively, we demonstrated a novel host m6A-IRF7-IFN antiviral signaling cascade that restricts rotavirus infection in vivo.

Data availability

RNA sequencing data are available from the SRA database with accession numbers PRJNA713535.All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files is in Dryad.Source Data contain the numerical data used to generate the figures.

The following data sets were generated

Article and author information

Author details

  1. Anmin Wang

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wanyiin Tao

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiyu Tong

    Department of Microbiology and Immunology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Juanzi Gao

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jinghao Wang

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Gaopeng Hou

    Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chen Qian

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Guorong Zhang

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Runzhi Li

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Decai Wang

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xingxing Ren

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Kaiguang Zhang

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Siyuan Ding

    Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Richard A Flavell

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4461-0778
  15. Huabing Li

    Department of Microbiology and Immunology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Wen Pan

    Department of Digestive Disease, University of Science and Technology of China, Hefei, China
    For correspondence
    wenpan@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  17. Shu Zhu

    Institute of Immunology, University of Science and Technology of China, Hefei, China
    For correspondence
    zhushu@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8163-0869

Funding

Chinese Academy of Sciences (Strategic Priority Research Program (XDB29030101))

  • Shu Zhu

National Key Research and Development Program of China (2018YFA0508000)

  • Shu Zhu

National Natural Science Foundation of China (81822021,91842105,31770990,82061148013,81821001)

  • Shu Zhu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were performed according to approved protocols by the Ethics Committee at the University of Science and Technology of China (USTCACUC202101016).

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,799
    views
  • 466
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anmin Wang
  2. Wanyiin Tao
  3. Jiyu Tong
  4. Juanzi Gao
  5. Jinghao Wang
  6. Gaopeng Hou
  7. Chen Qian
  8. Guorong Zhang
  9. Runzhi Li
  10. Decai Wang
  11. Xingxing Ren
  12. Kaiguang Zhang
  13. Siyuan Ding
  14. Richard A Flavell
  15. Huabing Li
  16. Wen Pan
  17. Shu Zhu
(2022)
m6A modifications regulate intestinal immunity and rotavirus infection
eLife 11:e73628.
https://doi.org/10.7554/eLife.73628

Share this article

https://doi.org/10.7554/eLife.73628

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.