Targeting the Annexin A1-FPR2/ALX pathway for host-directed therapy in dengue disease
Abstract
Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor 1 knockout (KO), AnxA1 KO and FPR2 KO mice were infected with Dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. Additionally, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. While the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestations. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.
Data availability
All data has been included in the manuscript, and source data files have been provided for Figures 1-6.
Article and author information
Author details
Funding
Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig Hospedeiro em Dengue project)
- Mauro Martins Teixeira
Medical Research Council (MR/No17544/1)
- Lirlândia Pires Sousa
- Danielle Gloria Souza
- Helton da Costa Santiago
- Mauro Perretti
- Mauro Martins Teixeira
Conselho Nacional de Desenvolvimento Científico e Tecnológico (Instituto Nacional de Ciência e Tecnologia em Dengue)
- Lirlândia Pires Sousa
- Danielle Gloria Souza
- Mauro Martins Teixeira
Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Instituto Nacional de Ciência e Tecnologia em Dengue)
- Lirlândia Pires Sousa
- Danielle Gloria Souza
- Mauro Martins Teixeira
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance Code 001)
- Michelle A Sugimoto
- Mauro Martins Teixeira
L'Oréal-UNESCO-ABC (Para Mulheres na Ciência prize")
- Vivian Vasconcelos Costa
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Pós-Doutorado/Capes (PNPD /CAPES))
- Michelle A Sugimoto
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the Brazilian Government's ethical and animal experiments regulations (Law 11794/2008) and the recommendations of the CONCEA (Conselho Nacional de Controle de Experimentação Animal) from Brazil. All animal experiments received prior approval from the Animal Ethics Committee (CEUA) of Universidade Federal de Minas Gerais (UFMG), Brazil (Protocol numbers: 169/2016 and 234/2019). All surgeries were performed under ketamine/xylazine anaesthesia, and every effort was made to minimise animal suffering.
Human subjects: Human sample collection was approved by the Committee on Ethics in Research of the Universidade Federal de Minas Gerais (Protocol Numbers 24832513.4.0000.5149 and 66128617.6.0000.5149). All patients have provided signed informed consent.
Reviewing Editor
- Frank Kirchhoff, Ulm University Medical Center, Germany
Version history
- Received: September 14, 2021
- Preprint posted: November 3, 2021 (view preprint)
- Accepted: March 15, 2022
- Accepted Manuscript published: March 16, 2022 (version 1)
- Version of Record published: March 28, 2022 (version 2)
Copyright
© 2022, Costa et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,355
- Page views
-
- 183
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Immunology and Inflammation
Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.
-
- Immunology and Inflammation
- Neuroscience
Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.