Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection

  1. Noah J Silverstein
  2. Yetao Wang  Is a corresponding author
  3. Zachary Manickas-Hill
  4. Claudia Carbone
  5. Ann Dauphin
  6. Brittany P Boribong
  7. Maggie Loiselle
  8. Jameson Davis
  9. Maureen M Leonard
  10. Leticia Kuri-Cervantes
  11. MGH COVID-19 Collection & Processing Team
  12. Nuala J Meyer
  13. Michael R Betts
  14. Jonathan Z Li
  15. Bruce D Walker
  16. Xu G Yu
  17. Lael M Yonker
  18. Jeremy Luban  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Ragon Institute of MGH, MIT and Harvard, United States
  3. Massachusetts General Hospital, United States
  4. University of Pennsylvania, United States
  5. Brigham and Women's Hospital, United States
  6. Ragon Institute of MGH, MIT, and Harvard, United States

Abstract

Background: Risk of severe COVID-19 increases with age, is greater in males, and is associated with lymphopenia, but not with higher burden of SARS-CoV-2. It is unknown whether effects of age and sex on abundance of specific lymphoid subsets explain these correlations.

Methods: Multiple regression was used to determine the relationship between abundance of specific blood lymphoid cell types, age, sex, requirement for hospitalization, duration of hospitalization, and elevation of blood markers of systemic inflammation, in adults hospitalized for severe COVID-19 (n=40), treated for COVID-19 as outpatients (n=51), and in uninfected controls (n=86), as well as in children with COVID-19 (n=19), recovering from COVID-19 (n=14), MIS-C (n=11), recovering from MIS-C (n=7), and pediatric controls (n=17).

Results: This observational study found that the abundance of innate lymphoid cells (ILCs) decreases more than 7-fold over the human lifespan - T cell subsets decrease less than 2-fold - and is lower in males than in females. After accounting for effects of age and sex, ILCs, but not T cells, were lower in adults hospitalized with COVID-19, independent of lymphopenia. Among SARS-CoV-2-infected adults, the abundance of ILCs, but not of T cells, correlated inversely with odds and duration of hospitalization, and with severity of inflammation. ILCs were also uniquely decreased in pediatric COVID-19 and the numbers of these cells did not recover during follow-up. In contrast, children with MIS-C had depletion of both ILCs and T cells, and both cell types increased during follow-up. In both pediatric COVID-19 and MIS-C, ILC abundance correlated inversely with inflammation. Blood ILC mRNA and phenotype tracked closely with ILCs from lung. Importantly, blood ILCs produced amphiregulin, a protein implicated in disease tolerance and tissue homeostasis. Among controls, the percentage of ILCs that produced amphiregulin was higher in females than in males, and people hospitalized with COVID-19 had a lower percentage of ILCs that produced amphiregulin than did controls.

Conclusions: These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance contributes to increased COVID-19 severity with age and in males.

Funding: This work was supported in part by the Massachusetts Consortium for Pathogen Readiness and NIH grants R37AI147868, R01AI148784, F30HD100110, 5K08HL143183.

Data availability

All clinical and flow cytometry data generated and analyzed in this article are included in the manuscript and are provided in three spreadsheets titled: "Adult_COVIDandControl_data.xlsx", "Pediatric_ COVID_MISC_andControl_data.xlsx", and "AREG_in_ILCs.xlsx". New Bulk RNA-seq datasets generated here are deposited at: NCBI Gene Expression Omnibus (GEO): GSE168212.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Noah J Silverstein

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5688-9978
  2. Yetao Wang

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    yetao.wang@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Zachary Manickas-Hill

    Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudia Carbone

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ann Dauphin

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brittany P Boribong

    Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Maggie Loiselle

    Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1051-2072
  8. Jameson Davis

    Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Maureen M Leonard

    Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Leticia Kuri-Cervantes

    Institute for Immunology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. MGH COVID-19 Collection & Processing Team

  12. Nuala J Meyer

    Department of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Michael R Betts

    Institute for Immunology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jonathan Z Li

    Department of Medicine, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Bruce D Walker

    Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Xu G Yu

    Ragon Institute of MGH, MIT, and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Lael M Yonker

    Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Jeremy Luban

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    jeremy.luban@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5650-4054

Funding

National Institutes of Health (R37AI147868)

  • Jeremy Luban

National Institutes of Health (R01AI148784)

  • Jeremy Luban

National Institutes of Health (F30HD100110)

  • Noah J Silverstein

National Institutes of Health (5K08HL143183)

  • Lael M Yonker

Massachusetts Consortium for Pathogen Readiness

  • Jeremy Luban

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Evangelos J Giamarellos-Bourboulis, National and Kapodistrian University of Athens, Medical School, Greece

Ethics

Human subjects: As part of a COVID-19 observational study, peripheral blood samples were collected between March 31st and June 3rd of 2020 from 91 adults with SARS-CoV-2 infection, either after admission to Massachusetts General Hospital for the hospitalized cohort, or while at affiliated outpatient clinics for the outpatient cohort. Request for access to coded patient samples was reviewed by the Massachusetts Consortium for Pathogen Readiness (https://masscpr.hms.harvard.edu/) and approved by the University of Massachusetts Medical School IRB (protocol #H00020836). Pediatric participants with COVID-19 or MIS-C were enrolled in the Massachusetts General Hospital Pediatric COVID-19 Biorepository (MGB IRB # 2020P000955). Healthy pediatric controls were enrolled in the Pediatric Biorepository (MGB IRB # 2016P000949). Samples were collected after obtaining consent from the patient if 18 years or older, or from the parent/guardian, plus assent when appropriate.

Version history

  1. Preprint posted: January 15, 2021 (view preprint)
  2. Received: October 14, 2021
  3. Accepted: March 11, 2022
  4. Accepted Manuscript published: March 11, 2022 (version 1)
  5. Version of Record published: April 25, 2022 (version 2)

Copyright

© 2022, Silverstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,048
    views
  • 369
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noah J Silverstein
  2. Yetao Wang
  3. Zachary Manickas-Hill
  4. Claudia Carbone
  5. Ann Dauphin
  6. Brittany P Boribong
  7. Maggie Loiselle
  8. Jameson Davis
  9. Maureen M Leonard
  10. Leticia Kuri-Cervantes
  11. MGH COVID-19 Collection & Processing Team
  12. Nuala J Meyer
  13. Michael R Betts
  14. Jonathan Z Li
  15. Bruce D Walker
  16. Xu G Yu
  17. Lael M Yonker
  18. Jeremy Luban
(2022)
Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection
eLife 11:e74681.
https://doi.org/10.7554/eLife.74681

Share this article

https://doi.org/10.7554/eLife.74681

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.