1. Cell Biology
  2. Medicine
Download icon

Funding: Blinding peer review

  1. Michael A Taffe  Is a corresponding author
  1. Department of Psychiatry and the Skaggs School of Pharmacy, University of California, San Diego, United States
Insight
  • Cited 0
  • Views 866
  • Annotations
Cite this article as: eLife 2021;10:e74744 doi: 10.7554/eLife.74744

Abstract

Concealing the identity of the principal investigator only partially closes the success gap between white and African American or Black researchers in NIH grant applications.

Main text

Every year, approximately 55,000 research grant applications are submitted to the US National Institutes of Health (NIH); of those only 11,000 will be selected for funding. NIH-funded research drives major advances in scientific knowledge, medicine and healthcare, helping to improve health, to reduce morbidity and to create economic innovation. Yet, how this funding is distributed is increasingly coming under scrutiny.

In particular, research shows that applications spearheaded by principal investigators who identify as African American or Black (AAB) do not get funded as often as those led by white researchers. From 2000 to 2006, for instance, Research Project Grant (R01) applications by AAB investigators were 42% less successful than those led by white researchers (Ginther et al., 2011). When the report highlighting this gap was first published in 2011, the Director of the NIH asserted that “the situation [was] not acceptable” (Corbyn, 2011); yet a similar 40 % reduction in success rate was reported for applications with AAB principal investigators submitted from 2011 to 2015 (Hoppe et al., 2019). AAB leaders were more likely to propose investigating questions that were less often awarded money, but they were also less likely to be funded regardless of grant topic.

Overall, this body of work suggests that AAB scientists have unequitable access to public resources, hindering the advance of knowledge – especially on health care topics of interest for communities of color (Dzirasa, 2020; Gilpin and Taffe, 2021; Harnett, 2020; Stevens et al., 2021; Taffe and Gilpin, 2021). These disparities shed light on biases that may contaminate the grant-awarding mechanism, spurring interest into whether the process could be improved. Now, in eLife, Bruce Reed and colleagues at the NIH/Center for Scientific Review – including Richard Nakamura as first author – report the impact of reviewer blinding on the funding gap (Nakamura et al., 2021).

Typically, each NIH application is first evaluated in depth by three peer scientists, who provide an initial ‘overall-impact’ score which is averaged to rank the submissions. A panel of 20–30 researchers then assembles to discuss the top half of the applications assigned to them; together, they vote on a final overall-impact score for each of these projects, following a discussion led by the three assigned reviewers. Finally, these scores are used by the 24 NIH Institutes and Centers that issue the grants to decide which projects to fund (Kienholz and Berg, 2013). Initial peer review therefore plays a major role in determining which applications will receive a grant by providing an all-critical preliminary impact score. Many have therefore proposed that blinding these reviewers to the identity of the applicants could help to potentially eliminate the disparity between white and AAB investigators.

To explore this question, Nakamura et al. obtained 400 R01 applications with AAB principal investigators submitted and reviewed in 2014–2015, as well as two comparison sets of 400 applications with white investigators. One of these two sets was randomly selected from the 26,000 applications submitted in the same period; the other was created by ensuring that the applications matched those with AAB principal investigators on several characteristics, including the preliminary impact score from the assigned reviewers. The team removed any identity information from the proposals. Both anonymized and original, unredacted applications were then peer-reviewed by different sets of researchers.

Results showed that anonymizing the applications reduced the scores for projects led by white investigators, but this manipulation did not change the scores of applications from AAB researchers. Overall, the reduction in white investigators’ scores only closed the AAB-white gap by about half. Yet, several methodological issues may limit how well these results could translate to actual NIH review processes.

First, reviewers did not meet in panels to discuss applications and vote final scores; a critical part of the NIH reviewing process was therefore not duplicated, and the impact of blinding this step cannot be determined. Second, Nakamura et al. report that 22% of reviewers ‘broke the blind’ by correctly identifying the specific principal investigator or research group leading the anonymized application. Merely removing direct identifiers from proposals may therefore not be sufficient to blind review. Finally, scores were not always replicated between the original and study reviews – they were improved for white investigators in the group matching AAB applicants’ scores. This discrepancy could imply that the reviews conducted for the study might have been done differently than during the original process.

Importantly, the work by Nakamura et al. shows that changing NIH grant evaluation to blinded review will have limited impact, one that will take place primarily through reducing the advantage of non-anonymized proposals for white investigators. White researchers from one of the groups received different scores in the study, compared to the original review, which clearly suggests that review outcomes at the NIH may not reflect objective and highly repeatable assessments of merit.

This study has critical implications for fixing the NIH funding disparity first identified in the 2011 Ginther report. So many have proposed that blinding review is a simple solution; Nakamura et al. have shown that this would be insufficient. This work, combined with identified disparities in funding of topics (Hoppe et al., 2019), should re-orient the NIH away from trying to identify singular causes, and towards applying direct fixes with immediate impact.

References

Article and author information

Author details

  1. Michael A Taffe

    Michael A Taffe is in the Department of Psychiatry and the Skaggs School of Pharmacy, University of California, San Diego, La Jolla, United States

    For correspondence
    mtaffe@health.ucsd.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9827-1738

Publication history

  1. Version of Record published: November 24, 2021 (version 1)

Copyright

© 2021, Taffe

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 866
    Page views
  • 29
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Dawei Wang et al.
    Research Article Updated

    Actin filaments (F-actin) have been implicated in various steps of endosomal trafficking, and the length of F-actin is controlled by actin capping proteins, such as CapZ, which is a stable heterodimeric protein complex consisting of α and β subunits. However, the role of these capping proteins in endosomal trafficking remains elusive. Here, we found that CapZ docks to endocytic vesicles via its C-terminal actin-binding motif. CapZ knockout significantly increases the F-actin density around immature early endosomes, and this impedes fusion between these vesicles, manifested by the accumulation of small endocytic vesicles in CapZ-knockout cells. CapZ also recruits several RAB5 effectors, such as Rabaptin-5 and Rabex-5, to RAB5-positive early endosomes via its N-terminal domain, and this further activates RAB5. Collectively, our results indicate that CapZ regulates endosomal trafficking by controlling actin density around early endosomes and recruiting RAB5 effectors.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Carolina Franco Nitta et al.
    Research Article Updated

    Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.