Abstract

To fight the Covid-19 pandemic caused by the RNA virus SARS-CoV-2 a global vaccination campaign is in progress to achieve the immunization of billions of people mainly with adenoviral vector- or mRNA-based vaccines, all of which encode the SARS-CoV-2 Spike protein. In some rare cases, cerebral venous sinus thromboses (CVST) have been reported as a severe side effect occurring 4 to 14 days after the first vaccination and were often accompanied by thrombocytopenia. Besides CVST, splanchnic vein thromboses (SVT) and other thromboembolic events have been observed. These events only occurred following vaccination with adenoviral vector-based vaccines but not following vaccination with mRNA-based vaccines. Meanwhile, scientists have proposed an immune-based pathomechanism and the condition has been coined Vaccine-induced Immune Thrombotic Thrombocytopenia (VITT). Here, we describe an unexpected mechanism that could explain thromboembolic events occurring with DNA-based but not with RNA-based vaccines. We show that DNA-encoded mRNA coding for Spike protein can be spliced in a way that the transmembrane anchor of Spike is lost, so that nearly full-length Spike is secreted from cells. Secreted Spike variants could potentially initiate severe side effects when binding to cells via the ACE2 receptor. Avoiding such splicing events should become part of a rational vaccine design to increase safety of prospective vaccines.

Data availability

The original WUHAN SARS-CoV-2 sequence is available in the NCBI database (NCBI Reference Sequence: NC_045512.2); the adenoviral and codon-optimized Spike sequence data have a protected intellectual property by the companies. The primary sequence of Ad5.S, designed and used by the colleagues in Ulm, can be retrieved upon request (contact Prof. Stefan Kochanek).

The following previously published data sets were used

Article and author information

Author details

  1. Eric Kowarz

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Lea Krutzke

    Department of Gene Therapy, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4092-4131
  3. Marius Külp

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Patrick Streb

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrizia Larghero

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer Reis

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Silvia Bracharz

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Tatjana Engler

    Department of Gene Therapy, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Stefan Kochanek

    Department of Gene Therapy, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Rolf Marschalek

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    For correspondence
    Rolf.Marschalek@em.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4870-3445

Funding

Goethe University Corona Task Force

  • Rolf Marschalek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Saskia Middeldorp, Radboud University Nijmegen, Netherlands

Version history

  1. Preprint posted: May 26, 2021 (view preprint)
  2. Received: October 25, 2021
  3. Accepted: January 21, 2022
  4. Accepted Manuscript published: January 27, 2022 (version 1)
  5. Version of Record published: February 15, 2022 (version 2)

Copyright

© 2022, Kowarz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,308
    views
  • 742
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Kowarz
  2. Lea Krutzke
  3. Marius Külp
  4. Patrick Streb
  5. Patrizia Larghero
  6. Jennifer Reis
  7. Silvia Bracharz
  8. Tatjana Engler
  9. Stefan Kochanek
  10. Rolf Marschalek
(2022)
Vaccine-induced COVID-19 mimicry syndrome
eLife 11:e74974.
https://doi.org/10.7554/eLife.74974

Share this article

https://doi.org/10.7554/eLife.74974

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.