Abstract

The dynamics of living organisms are organized across many spatial scales. However, current cost-effective imaging systems can measure only a subset of these scales at once. We have created a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, we computationally generate gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This allows us to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales, including larval zebrafish, fruit flies, nematodes, carpenter ants, and slime mold. Further, the MCAM architecture allows stereoscopic tracking of the z-position of organisms using the overlapping field of view from adjacent cameras. Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms across a wide range of spatial scales.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files;Source Data files and associated analysis code have been provided on https://gitlab.oit.duke.edu/ean26/gigapixelimaging.To view associated MCAM videos with flexible zooming capabilities see https://gigazoom.rc.duke.edu/team/Gigapixel%20behavioral%20and%20neural%20activity%20imaging%20with%20a%20novel%20multi-camera%20array%20microscope/Owl.Other MCAM source data can be viewed at https://gigazoom.rc.duke.edu/Raw MCAM video data as well as other relevant manuscript data for all experiments is publicly available at https://doi.org/10.7924/r4nv9kp8v.

Article and author information

Author details

  1. Eric Thomson

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  2. Mark Harfouche

    Ramona Optics Inc, Durham, United States
    Competing interests
    Mark Harfouche, is scientific co-founder at Ramona Optics Inc. which is commercializing and patenting themulti-camera array microscope..
  3. Kanghyun Kim

    Biomedical Engineering, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4557-9525
  4. Pavan Konda

    Biomedical Engineering, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  5. Catherine W Seitz

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  6. Colin Cooke

    Biomedical Engineering, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  7. Shiqi Xu

    Biomedical Engineering, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8450-9001
  8. Whitney S Jacobs

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  9. Robin Blazing

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  10. Yang Chen

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  11. Sunanda Sharma

    Ramona Optics Inc, Durham, United States
    Competing interests
    Sunanda Sharma, was an employee at Ramona Optics Inc., which is commercializing and patenting themulti-camera array microscope..
  12. Timothy W Dunn

    Department of Statistical Science, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9381-4630
  13. Jaehee Park

    Ramona Optics Inc, Durham, United States
    Competing interests
    Jaehee Park, was an employee at Ramona Optics Inc., which is commercializing and patenting themulti-camera array microscope..
  14. Roarke W Horstmeyer

    Biomedical Engineering, Duke University, Durham, United States
    For correspondence
    roarke.w.horstmeyer@duke.edu
    Competing interests
    Roarke W Horstmeyer, is a scientific co-founder at Ramona Optics Inc., which is commercializing and patenting the multi-camera array microscope..
  15. Eva A Naumann

    Department of Neurobiology, Duke University, Durham, United States
    For correspondence
    eva.naumann@duke.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7215-4717

Funding

Alfred P. Sloan Foundation (Sloan Foundation)

  • Eva A Naumann

Office of Research Infrastructure Programs, National Institutes of Health (SBIR R44OD024879)

  • Eric Thomson
  • Mark Harfouche
  • Sunanda Sharma
  • Timothy W Dunn
  • Eva A Naumann

National Cancer Institute (SBIR R44CA250877)

  • Mark Harfouche
  • Sunanda Sharma
  • Jaehee Park

National Science Foundation (NSF 2036439)

  • Mark Harfouche
  • Sunanda Sharma
  • Jaehee Park

National Institute of Biomedical Imaging and Bioengineering (SBIR R43EB030979-01)

  • Mark Harfouche
  • Sunanda Sharma
  • Jaehee Park

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments followed the US Public Health Service Policy on Humane Care and Use of Laboratory Animals, under the protocol A083-21-04 approved by the Institutional Animal Care and Use Committee (IACUC) of Duke University School of Medicine. All experiments on zebrafish were performed according to these standards and every effort was made to minimize suffering.

Copyright

© 2022, Thomson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,352
    views
  • 497
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Thomson
  2. Mark Harfouche
  3. Kanghyun Kim
  4. Pavan Konda
  5. Catherine W Seitz
  6. Colin Cooke
  7. Shiqi Xu
  8. Whitney S Jacobs
  9. Robin Blazing
  10. Yang Chen
  11. Sunanda Sharma
  12. Timothy W Dunn
  13. Jaehee Park
  14. Roarke W Horstmeyer
  15. Eva A Naumann
(2022)
Gigapixel imaging with a novel multi-camera array microscope
eLife 11:e74988.
https://doi.org/10.7554/eLife.74988

Share this article

https://doi.org/10.7554/eLife.74988

Further reading

    1. Neuroscience
    Arndt-Lukas Klaassen, Björn Rasch
    Research Article

    Sleep associated memory consolidation and reactivation play an important role in language acquisition and learning of new words. However, it is unclear to what extent properties of word learning difficulty impact sleep associated memory reactivation. To address this gap, we investigated in 22 young healthy adults the effectiveness of auditory targeted memory reactivation (TMR) during non-rapid eye movement sleep of artificial words with easy and difficult to learn phonotactical properties. Here, we found that TMR of the easy words improved their overnight memory performance, whereas TMR of the difficult words had no effect. By comparing EEG activities after TMR presentations, we found an increase in slow wave density independent of word difficulty, whereas the spindle-band power nested during the slow wave up-states – as an assumed underlying activity of memory reactivation – was significantly higher in the easy/effective compared to the difficult/ineffective condition. Our findings indicate that word learning difficulty by phonotactics impacts the effectiveness of TMR and further emphasize the critical role of prior encoding depth in sleep associated memory reactivation.

    1. Neuroscience
    Allison T Goldstein, Terrence R Stanford, Emilio Salinas
    Research Article

    The neural mechanisms that willfully direct attention to specific locations in space are closely related to those for generating targeting eye movements (saccades). However, the degree to which the voluntary deployment of attention to a location necessarily activates a corresponding saccade plan remains unclear. One problem is that attention and saccades are both automatically driven by salient sensory events; another is that the underlying processes unfold within tens of milliseconds only. Here, we use an urgent task design to resolve the evolution of a visuomotor choice on a moment-by-moment basis while independently controlling the endogenous (goal-driven) and exogenous (salience-driven) contributions to performance. Human participants saw a peripheral cue and, depending on its color, either looked at it (prosaccade) or looked at a diametrically opposite, uninformative non-cue (antisaccade). By varying the luminance of the stimuli, the exogenous contributions could be cleanly dissociated from the endogenous process guiding the choice over time. According to the measured time courses, generating a correct antisaccade requires about 30 ms more processing time than generating a correct prosaccade based on the same perceptual signal. The results indicate that saccade plans elaborated during fixation are biased toward the location where attention is endogenously deployed, but the coupling is weak and can be willfully overridden very rapidly.