Cortical microtubule pulling forces contribute to the union of the parental genomes in the C. elegans zygote
Abstract
Previously, we reported that the Polo-like kinase PLK-1 phosphorylates the single C. elegans lamin (LMN-1) to trigger lamina depolymerization during mitosis. We showed that this event is required to form a pronuclear envelopes scission event that removes membranes on the juxtaposed oocyte and sperm pronuclear envelopes in the zygote, allowing the parental chromosomes to merge in a single nucleus after segregation (Velez-Aguilera et al., 2020). Here we show that cortical microtubule pulling forces contribute to pronuclear envelopes scission by promoting mitotic spindle elongation, and conversely, nuclear envelope remodeling facilitates spindle elongation. We also demonstrate that weakening the pronuclear envelopes via PLK-1-mediated lamina depolymerization, is a prerequisite for the astral microtubule pulling forces to trigger pronuclear membranes scission. Finally, we provide evidence that PLK-1 mainly acts via lamina depolymerization in this process. These observations thus indicate that temporal coordination between lamina depolymerization and mitotic spindle elongation facilitates pronuclear envelopes scission and parental genomes unification.
Data availability
All the raw data are provided in the manuscript
Article and author information
Author details
Funding
Agence Nationale de la Recherche (ANR-17-CE13-0011)
- Lionel Pintard
Consejo Nacional de Ciencia y Tecnología (CVU 364106)
- Griselda Velez-Aguilera
Agence Nationale de la Recherche (ANR-18-IDEX-0001)
- Nicolas Joly
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Velez-Aguilera et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,128
- views
-
- 200
- downloads
-
- 8
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.