Modelling the response to vaccine in non-human primates to define SARS-CoV-2 mechanistic correlates of protection

  1. Marie Alexandre
  2. Romain Marlin
  3. Mélanie Prague
  4. Severin Coleon
  5. Nidhal Kahlaoui
  6. Sylvain Cardinaud
  7. Thibaut Naninck
  8. Benoit Delache
  9. Mathieu Surenaud
  10. Mathilde Galhaut
  11. Nathalie Dereuddre-Bosquet
  12. Mariangela Cavarelli
  13. Pauline Maisonnasse
  14. Mireille Centlivre
  15. Christine Lacabaratz
  16. Aurelie Wiedemann
  17. Sandra Zurawski
  18. Gerard Zurawski
  19. Olivier Schwartz
  20. Rogier W Sanders
  21. Roger Le Grand
  22. Yves Levy
  23. Rodolphe Thiébaut  Is a corresponding author
  1. University of Bordeaux, Inria SISTM, UMR 1219, France
  2. Université Paris-Saclay, Inserm, CEA, France
  3. Vaccine Research Institute, Inserm U955, France
  4. Baylor Scott and White Research Institute, United States
  5. Institut Pasteur, France
  6. University of Amsterdam, Netherlands

Abstract

The definition of correlates of protection is critical for the development of next generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.

Data availability

No unique reagents were generated for this study.Data that support the findings of this study are provided in the source data files of this paper and gather data from 1) the study [Marlin, Nature Com 2021] used in this analysis, which are also directly available online in the section Source data of this related paper (https://www.nature.com/articles/s41467-021-25382-0#Sec17) ; 2) the study [Brouwer, Cell 2021] used in this analysis, which are also available from the corresponding authors of the related paper and 3) the study [Corbett, NEJM 2020] used in this analysis, which are also available online in the section Supplementary Material of the related paper, excel file labelled ("Supplementary Appendix 2"). Data from the main study [Marlin, Nature Com 2021] can also be found in the open-access repository Dryad using the following DOI: https://doi.org/10.5061/dryad.1zcrjdfv7.The original code (mlxtran models and R) as well as model definition files including the full list of parameters used are available and free-of-cost on github (Inria SISTM Team) at the following link: https://github.com/sistm/SARSCoV2modelingNHP.

Article and author information

Author details

  1. Marie Alexandre

    Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3557-7075
  2. Romain Marlin

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Mélanie Prague

    Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Severin Coleon

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Nidhal Kahlaoui

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Sylvain Cardinaud

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Thibaut Naninck

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Benoit Delache

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Mathieu Surenaud

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Mathilde Galhaut

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Nathalie Dereuddre-Bosquet

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Mariangela Cavarelli

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Pauline Maisonnasse

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0555-207X
  14. Mireille Centlivre

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Christine Lacabaratz

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Aurelie Wiedemann

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Sandra Zurawski

    Baylor Scott and White Research Institute, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Gerard Zurawski

    Baylor Scott and White Research Institute, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Olivier Schwartz

    Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0729-1475
  20. Rogier W Sanders

    Department of Medical Microbiology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  21. Roger Le Grand

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4928-4484
  22. Yves Levy

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  23. Rodolphe Thiébaut

    Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
    For correspondence
    rodolphe.thiebaut@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5235-3962

Funding

Agence Nationale de la Recherche (ANR-10-LABX-77-01)

  • Yves Levy
  • Rodolphe Thiébaut

Agence Nationale de la Recherche (ANR-11- 1018 INBS-0008)

  • Roger Le Grand

This work was supported by INSERM and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR under reference ANR-10-LABX-77-01. MA has been funded by INRIA PhD grant. The Infectious Disease Models and Innovative Therapies (IDMIT) research infrastructure is supported by the Programme Investissements d'Avenir"

Ethics

Animal experimentation: Cynomolgus macaques (Macaca fascicularis), aged 37-66 months (18 females and 13 males) and originating from Mauritian AAALAC certified breeding centers were used in this study. All animals were housed in IDMIT facilities (CEA, Fontenay-aux-roses), under BSL2 and BSL-3 containment when necessary (Animal facility authorization #D92-032-02, Préfecture des Hauts de Seine, France) and in compliance with European Directive 2010/63/EU, the French regulations and the Standards for Human Care and Use of Laboratory Animals, of the Office for Laboratory Animal Welfare (OLAW, assurance number #A5826-01, US). The protocols were approved by the institutional ethical committee "Comité d'Ethique en Expérimentation Animale du Commissariat à l'Energie Atomique et aux Energies Alternatives" (CEtEA #44) under statement number A20-011. The study was authorized by the "Research, Innovation and Education Ministry" under registration number APAFIS#24434-2020030216532863v1.

Copyright

© 2022, Alexandre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,125
    views
  • 284
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marie Alexandre
  2. Romain Marlin
  3. Mélanie Prague
  4. Severin Coleon
  5. Nidhal Kahlaoui
  6. Sylvain Cardinaud
  7. Thibaut Naninck
  8. Benoit Delache
  9. Mathieu Surenaud
  10. Mathilde Galhaut
  11. Nathalie Dereuddre-Bosquet
  12. Mariangela Cavarelli
  13. Pauline Maisonnasse
  14. Mireille Centlivre
  15. Christine Lacabaratz
  16. Aurelie Wiedemann
  17. Sandra Zurawski
  18. Gerard Zurawski
  19. Olivier Schwartz
  20. Rogier W Sanders
  21. Roger Le Grand
  22. Yves Levy
  23. Rodolphe Thiébaut
(2022)
Modelling the response to vaccine in non-human primates to define SARS-CoV-2 mechanistic correlates of protection
eLife 11:e75427.
https://doi.org/10.7554/eLife.75427

Share this article

https://doi.org/10.7554/eLife.75427

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Matthew C Pahl, Prabhat Sharma ... Andrew D Wells
    Research Article

    Genome-wide association studies (GWAS) have identified hundreds of genetic signals associated with autoimmune disease. The majority of these signals are located in non-coding regions and likely impact cis-regulatory elements (cRE). Because cRE function is dynamic across cell types and states, profiling the epigenetic status of cRE across physiological processes is necessary to characterize the molecular mechanisms by which autoimmune variants contribute to disease risk. We localized risk variants from 15 autoimmune GWAS to cRE active during TCR-CD28 co-stimulation of naïve human CD4+ T cells. To characterize how dynamic changes in gene expression correlate with cRE activity, we measured transcript levels, chromatin accessibility, and promoter–cRE contacts across three phases of naive CD4+ T cell activation using RNA-seq, ATAC-seq, and HiC. We identified ~1200 protein-coding genes physically connected to accessible disease-associated variants at 423 GWAS signals, at least one-third of which are dynamically regulated by activation. From these maps, we functionally validated a novel stretch of evolutionarily conserved intergenic enhancers whose activity is required for activation-induced IL2 gene expression in human and mouse, and is influenced by autoimmune-associated genetic variation. The set of genes implicated by this approach are enriched for genes controlling CD4+ T cell function and genes involved in human inborn errors of immunity, and we pharmacologically validated eight implicated genes as novel regulators of T cell activation. These studies directly show how autoimmune variants and the genes they regulate influence processes involved in CD4+ T cell proliferation and activation.

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.