Modelling the response to vaccine in non-human primates to define SARS-CoV-2 mechanistic correlates of protection

  1. Marie Alexandre
  2. Romain Marlin
  3. Mélanie Prague
  4. Severin Coleon
  5. Nidhal Kahlaoui
  6. Sylvain Cardinaud
  7. Thibaut Naninck
  8. Benoit Delache
  9. Mathieu Surenaud
  10. Mathilde Galhaut
  11. Nathalie Dereuddre-Bosquet
  12. Mariangela Cavarelli
  13. Pauline Maisonnasse
  14. Mireille Centlivre
  15. Christine Lacabaratz
  16. Aurelie Wiedemann
  17. Sandra Zurawski
  18. Gerard Zurawski
  19. Olivier Schwartz
  20. Rogier W Sanders
  21. Roger Le Grand
  22. Yves Levy
  23. Rodolphe Thiébaut  Is a corresponding author
  1. University of Bordeaux, Inria SISTM, UMR 1219, France
  2. Université Paris-Saclay, Inserm, CEA, France
  3. Vaccine Research Institute, Inserm U955, France
  4. Baylor Scott and White Research Institute, United States
  5. Institut Pasteur, France
  6. University of Amsterdam, Netherlands

Abstract

The definition of correlates of protection is critical for the development of next generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.

Data availability

No unique reagents were generated for this study.Data that support the findings of this study are provided in the source data files of this paper and gather data from 1) the study [Marlin, Nature Com 2021] used in this analysis, which are also directly available online in the section Source data of this related paper (https://www.nature.com/articles/s41467-021-25382-0#Sec17) ; 2) the study [Brouwer, Cell 2021] used in this analysis, which are also available from the corresponding authors of the related paper and 3) the study [Corbett, NEJM 2020] used in this analysis, which are also available online in the section Supplementary Material of the related paper, excel file labelled ("Supplementary Appendix 2"). Data from the main study [Marlin, Nature Com 2021] can also be found in the open-access repository Dryad using the following DOI: https://doi.org/10.5061/dryad.1zcrjdfv7.The original code (mlxtran models and R) as well as model definition files including the full list of parameters used are available and free-of-cost on github (Inria SISTM Team) at the following link: https://github.com/sistm/SARSCoV2modelingNHP.

Article and author information

Author details

  1. Marie Alexandre

    Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3557-7075
  2. Romain Marlin

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Mélanie Prague

    Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Severin Coleon

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Nidhal Kahlaoui

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Sylvain Cardinaud

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Thibaut Naninck

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Benoit Delache

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Mathieu Surenaud

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Mathilde Galhaut

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Nathalie Dereuddre-Bosquet

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Mariangela Cavarelli

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Pauline Maisonnasse

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0555-207X
  14. Mireille Centlivre

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Christine Lacabaratz

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Aurelie Wiedemann

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Sandra Zurawski

    Baylor Scott and White Research Institute, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Gerard Zurawski

    Baylor Scott and White Research Institute, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Olivier Schwartz

    Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0729-1475
  20. Rogier W Sanders

    Department of Medical Microbiology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  21. Roger Le Grand

    Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4928-4484
  22. Yves Levy

    Vaccine Research Institute, Inserm U955, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  23. Rodolphe Thiébaut

    Department of Public Health, Inserm Bordeaux Population Health Research Centre, University of Bordeaux, Inria SISTM, UMR 1219, Bordeaux, France
    For correspondence
    rodolphe.thiebaut@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5235-3962

Funding

Agence Nationale de la Recherche (ANR-10-LABX-77-01)

  • Yves Levy
  • Rodolphe Thiébaut

Agence Nationale de la Recherche (ANR-11- 1018 INBS-0008)

  • Roger Le Grand

This work was supported by INSERM and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR under reference ANR-10-LABX-77-01. MA has been funded by INRIA PhD grant. The Infectious Disease Models and Innovative Therapies (IDMIT) research infrastructure is supported by the Programme Investissements d'Avenir"

Reviewing Editor

  1. Frederik Graw, Heidelberg University, Germany

Ethics

Animal experimentation: Cynomolgus macaques (Macaca fascicularis), aged 37-66 months (18 females and 13 males) and originating from Mauritian AAALAC certified breeding centers were used in this study. All animals were housed in IDMIT facilities (CEA, Fontenay-aux-roses), under BSL2 and BSL-3 containment when necessary (Animal facility authorization #D92-032-02, Préfecture des Hauts de Seine, France) and in compliance with European Directive 2010/63/EU, the French regulations and the Standards for Human Care and Use of Laboratory Animals, of the Office for Laboratory Animal Welfare (OLAW, assurance number #A5826-01, US). The protocols were approved by the institutional ethical committee "Comité d'Ethique en Expérimentation Animale du Commissariat à l'Energie Atomique et aux Energies Alternatives" (CEtEA #44) under statement number A20-011. The study was authorized by the "Research, Innovation and Education Ministry" under registration number APAFIS#24434-2020030216532863v1.

Version history

  1. Preprint posted: November 1, 2021 (view preprint)
  2. Received: November 9, 2021
  3. Accepted: June 22, 2022
  4. Accepted Manuscript published: July 8, 2022 (version 1)
  5. Version of Record published: July 14, 2022 (version 2)

Copyright

© 2022, Alexandre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,017
    views
  • 276
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marie Alexandre
  2. Romain Marlin
  3. Mélanie Prague
  4. Severin Coleon
  5. Nidhal Kahlaoui
  6. Sylvain Cardinaud
  7. Thibaut Naninck
  8. Benoit Delache
  9. Mathieu Surenaud
  10. Mathilde Galhaut
  11. Nathalie Dereuddre-Bosquet
  12. Mariangela Cavarelli
  13. Pauline Maisonnasse
  14. Mireille Centlivre
  15. Christine Lacabaratz
  16. Aurelie Wiedemann
  17. Sandra Zurawski
  18. Gerard Zurawski
  19. Olivier Schwartz
  20. Rogier W Sanders
  21. Roger Le Grand
  22. Yves Levy
  23. Rodolphe Thiébaut
(2022)
Modelling the response to vaccine in non-human primates to define SARS-CoV-2 mechanistic correlates of protection
eLife 11:e75427.
https://doi.org/10.7554/eLife.75427

Share this article

https://doi.org/10.7554/eLife.75427

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.