Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects cells through binding to angiotensin-converting enzyme 2 (ACE2). This interaction is mediated by the receptor-binding domain (RBD) of the viral spike (S) glycoprotein. Structural and dynamic data have shown that S can adopt multiple conformations, which controls the exposure of the ACE2-binding site in the RBD. Here, using single-molecule Förster resonance energy transfer (smFRET) imaging we report the effects of ACE2 and antibody binding on the conformational dynamics of S from the Wuhan-1 strain and in the presence of the D614G mutation. We find that D614G modulates the energetics of the RBD position in a manner similar to ACE2 binding. We also find that antibodies that target diverse epitopes, including those distal to the RBD, stabilize the RBD in a position competent for ACE2 binding. Parallel solution-based binding experiments using fluorescence correlation spectroscopy (FCS) indicate antibody-mediated enhancement of ACE2 binding. These findings inform on novel strategies for therapeutic antibody cocktails.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Marco A Diaz-Salinas

    Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Qi Li

    Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    Qi Li, A patent application has been filed on May 5, 2020 on monoclonal antibodies targeting SARS-CoV-2 (U.S. Patent and Trademark Office patent application no. 63/020,483; patent applicants: YW, ME, and QL.
  3. Monir Ejemel

    Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    Monir Ejemel, A patent application has been filed on May 5, 2020 on monoclonal antibodies targeting SARS-CoV-2 (U.S. Patent and Trademark Office patent application no. 63/020,483; patent applicants: YW, ME, and QL.
  4. Leonid Yurkovetskiy

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  5. Jeremy Luban

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5650-4054
  6. Kuang Shen

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  7. Yang Wang

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    Yang Wang, A patent application has been filed on May 5, 2020 on monoclonal antibodies targeting SARS-CoV-2 (U.S. Patent and Trademark Office patent application no. 63/020,483; patent applicants: YW, ME, and QL.
  8. James B Munro

    Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    james.munro@umassmed.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7634-4633

Funding

UMass Chan Medical School COVID-19 Pandemic Relief Fund

  • James B Munro

National Institutes of Health (R37AI147868)

  • Jeremy Luban

National Institutes of Health (R01AI148784)

  • Jeremy Luban
  • James B Munro

National Institutes of Health (K22CA241362)

  • Kuang Shen

Evergrande COVID-19 Response Fund

  • Jeremy Luban

Massachusetts Consortium on Pathogen Readiness

  • Jeremy Luban

Worcester Foundation for Biomedical Research

  • Kuang Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ruben L Gonzalez Jr, Columbia University, United States

Version history

  1. Preprint posted: November 1, 2021 (view preprint)
  2. Received: November 10, 2021
  3. Accepted: March 17, 2022
  4. Accepted Manuscript published: March 24, 2022 (version 1)
  5. Version of Record published: March 29, 2022 (version 2)

Copyright

© 2022, Diaz-Salinas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,672
    views
  • 342
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marco A Diaz-Salinas
  2. Qi Li
  3. Monir Ejemel
  4. Leonid Yurkovetskiy
  5. Jeremy Luban
  6. Kuang Shen
  7. Yang Wang
  8. James B Munro
(2022)
Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike
eLife 11:e75433.
https://doi.org/10.7554/eLife.75433

Share this article

https://doi.org/10.7554/eLife.75433

Further reading

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.

    1. Microbiology and Infectious Disease
    Nguyen Thi Khanh Nhu, Minh-Duy Phan ... Mark A Schembri
    Research Article

    Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974–2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.