Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in C. elegans

  1. Haikel Dridi
  2. Frances Forrester
  3. Alisa Umanskaya
  4. Wenjun Xie
  5. Steven Reiken
  6. Alain Lacampagne
  7. Andrew Marks  Is a corresponding author
  1. Columbia University Medical Center, United States
  2. Montpellier University, INSERM, CNRS, France

Abstract

Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in C. elegans; however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Further, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in 'leaky' channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2-3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in life span amongst species.

Data availability

All data are described/available in the manuscript

Article and author information

Author details

  1. Haikel Dridi

    Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9533-7367
  2. Frances Forrester

    Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  3. Alisa Umanskaya

    Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  4. Wenjun Xie

    Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  5. Steven Reiken

    Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  6. Alain Lacampagne

    U1046, Montpellier University, INSERM, CNRS, Montpellier, France
    Competing interests
    No competing interests declared.
  7. Andrew Marks

    Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
    For correspondence
    arm42@cumc.columbia.edu
    Competing interests
    Andrew Marks, owns stock in ARMGO, Inc. a company developing compounds targeting RyR and has patents on Rycals.US 2014/0378437, and US 7,718,644..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8057-1502

Funding

National Heart, Lung, and Blood Institute (R01HL145473)

  • Andrew Marks

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK118240)

  • Andrew Marks

National Heart, Lung, and Blood Institute (R01HL142903)

  • Andrew Marks

National Heart, Lung, and Blood Institute (R01HL061503)

  • Andrew Marks

National Heart, Lung, and Blood Institute (R01HL140934)

  • Andrew Marks

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR070194)

  • Andrew Marks

National Heart, Lung, and Blood Institute (T32HL120826)

  • Andrew Marks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Dridi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 930
    views
  • 182
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haikel Dridi
  2. Frances Forrester
  3. Alisa Umanskaya
  4. Wenjun Xie
  5. Steven Reiken
  6. Alain Lacampagne
  7. Andrew Marks
(2022)
Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in C. elegans
eLife 11:e75529.
https://doi.org/10.7554/eLife.75529

Share this article

https://doi.org/10.7554/eLife.75529

Further reading

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.