The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein

  1. Hisham M Dokainish
  2. Suyong Re
  3. Takaharu Mori
  4. Chigusa Kobayashi
  5. Jaewoon Jung
  6. Yuji Sugita  Is a corresponding author
  1. RIKEN, Japan
  2. National Institutes of Biomedical Innovation, Health and Nutrition, Japan
  3. RIKEN Center for Computational Science, Japan

Abstract

Spike (S) protein is the primary antigenic target for neutralization and vaccine development for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It decorates the virus surface and undergoes large motions of its receptor binding domains (RBDs) to enter the host cell. Here, we observe Down, one-Up, one-Open, and two-Up-like structures in enhanced molecular dynamics simulations, and characterize the transition pathways via inter-domain interactions. Transient salt-bridges between RBDA and RBDC and the interaction with glycan at N343B support RBDA motions from Down to one-Up. Reduced interactions between RBDA and RBDB in one-Up induce RBDB motions toward two-Up. The simulations overall agree with cryo-EM structure distributions and FRET experiments and provide hidden functional structures, namely, intermediates along Down to one-Up transition with druggable cryptic pockets as well as one-Open with a maximum exposed RBD. The inherent flexibility of S-protein thus provides essential information for antiviral drug rational design or vaccine development.

Data availability

The trajectories were computed with GENESIS 2.0 beta, open source program https:// www.r-ccs.riken.jp/labs/cbrt/ and analyzed using GENESIS 1.6.0 analysis tools https://www.r-ccs.riken.jp/labs/cbrt/download/genesis-version-1-6/ Simulation data were deposited at https://covid.molssi.org/ Data of gREST simulations from Down including models and simulation structures are availableHisham M. Dokainish, Suyong Re, Takaharu Mori, Chigusa Kobayashi, Jaewoon Jung, and Yuji Sugita (2021) MolSSI gREST_SSCR Simulation of Trimeric SARS-CoV-2 Spike Protein Starting From Down Conformation. https://doi.org/10.34974/wtbx-0r84Data of gREST_Up simulations including model and simulation structures are availableHisham M. Dokainish, Suyong Re, Takaharu Mori, Chigusa Kobayashi, Jaewoon Jung, and Yuji Sugita (2021) MolSSI gREST_SSCR Simulation of Trimeric SARS-CoV-2 Spike Protein Starting From 1Up Conformation. https://doi.org/10.34974/xn67-xk26

The following data sets were generated

Article and author information

Author details

  1. Hisham M Dokainish

    Theoretical Molecular Science Laboratory, RIKEN, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4387-4790
  2. Suyong Re

    Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Takaharu Mori

    Theoretical Molecular Science Laboratory, RIKEN, Wako, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Chigusa Kobayashi

    Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5603-4619
  5. Jaewoon Jung

    Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2285-4432
  6. Yuji Sugita

    Theoretical Molecular Science Laboratory, RIKEN, Wako, Japan
    For correspondence
    sugita@riken.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9738-9216

Funding

Ministry of Education, Culture, Sports, Science and Technology (FLAGSHIP 2020 project)

  • Yuji Sugita

Ministry of Education, Culture, Sports, Science and Technology (19K06532)

  • Takaharu Mori

RIKEN (Dynamic Structural Biology/Glycolipidologue Initiative/Biology of Intracellular Environments)

  • Yuji Sugita

Ministry of Education, Culture, Sports, Science and Technology (Priority Issue on Post-K computer)

  • Yuji Sugita

Ministry of Education, Culture, Sports, Science and Technology (Program for Promoting Researches on the Supercomputer Fugaku)

  • Yuji Sugita

Ministry of Education, Culture, Sports, Science and Technology (JPMXP1020200101)

  • Yuji Sugita

Ministry of Education, Culture, Sports, Science and Technology (JPMXP1020200201)

  • Yuji Sugita

Ministry of Education, Culture, Sports, Science and Technology (19H05645)

  • Yuji Sugita

Ministry of Education, Culture, Sports, Science and Technology (21H05249)

  • Yuji Sugita

Ministry of Education, Culture, Sports, Science and Technology (20K15737)

  • Hisham M Dokainish

Ministry of Education, Culture, Sports, Science and Technology (19K12229)

  • Suyong Re

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Qiang Cui, Boston University, United States

Version history

  1. Preprint posted: August 6, 2021 (view preprint)
  2. Received: November 20, 2021
  3. Accepted: March 15, 2022
  4. Accepted Manuscript published: March 24, 2022 (version 1)
  5. Version of Record published: March 29, 2022 (version 2)

Copyright

© 2022, Dokainish et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,411
    views
  • 308
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hisham M Dokainish
  2. Suyong Re
  3. Takaharu Mori
  4. Chigusa Kobayashi
  5. Jaewoon Jung
  6. Yuji Sugita
(2022)
The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein
eLife 11:e75720.
https://doi.org/10.7554/eLife.75720

Share this article

https://doi.org/10.7554/eLife.75720

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.