Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1

  1. Colin LaMont
  2. Jakub Otwinowski
  3. Kanika Vanshylla
  4. Henning Gruell
  5. Florian Klein
  6. Armita Nourmohammad  Is a corresponding author
  1. Max Planck Institute for Dynamics and Self-Organization, Germany
  2. University of Cologne, Germany
  3. University of Washington, United States

Abstract

Infusion of broadly neutralizing antibodies (bNAbs) has shown promise as an alternative to anti-retroviral therapy against HIV. A key challenge is to suppress viral escape, which is more effectively achieved with a combination of bNAbs. Here, we propose a computational approach to predict the efficacy of a bNAb therapy based on the population genetics of HIV escape, which we parametrize using high-throughput HIV sequence data from bNAb-naive patients. By quantifying the mutational target size and the fitness cost of HIV-1 escape from bNAbs, we predict the distribution of rebound times in three clinical trials. We show that a cocktail of three bNAbs is necessary to effectively suppress viral escape, and predict the optimal composition of such bNAb cocktail. Our results offer a rational therapy design for HIV, and show how genetic data can be used to predict treatment outcomes and design new approaches to pathogenic control.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Reference to the previously published data used in this manuscript is provided. Modelling code is uploaded on GitHub at https://github.com/StatPhysBio/HIVTreatmentOptimization, and in the Julia package https://github.com/StatPhysBio/EscapeSimulator.

The following previously published data sets were used
    1. Zanini et al
    (2015) Project: PRJEB9618
    European Nucleotide Archive, Accession no: PRJEB9618.

Article and author information

Author details

  1. Colin LaMont

    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    No competing interests declared.
  2. Jakub Otwinowski

    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    No competing interests declared.
  3. Kanika Vanshylla

    University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  4. Henning Gruell

    University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0725-7138
  5. Florian Klein

    University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  6. Armita Nourmohammad

    Department of Physics, University of Washington, Seattle, United States
    For correspondence
    armita@uw.edu
    Competing interests
    Armita Nourmohammad, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6245-3553

Funding

Deutsche Forschungsgemeinschaft (1310)

  • Armita Nourmohammad

National Science Foundation (2045054)

  • Armita Nourmohammad

1Max Planck Institute for Dynamics and Self-organization (open access funding)

  • Colin LaMont
  • Jakub Otwinowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kayla Sprenger, MIT

Publication history

  1. Received: December 1, 2021
  2. Preprint posted: December 5, 2021 (view preprint)
  3. Accepted: July 4, 2022
  4. Accepted Manuscript published: July 19, 2022 (version 1)
  5. Version of Record published: September 12, 2022 (version 2)

Copyright

© 2022, LaMont et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,222
    Page views
  • 461
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Colin LaMont
  2. Jakub Otwinowski
  3. Kanika Vanshylla
  4. Henning Gruell
  5. Florian Klein
  6. Armita Nourmohammad
(2022)
Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1
eLife 11:e76004.
https://doi.org/10.7554/eLife.76004

Further reading

    1. Ecology
    2. Evolutionary Biology
    Jason P Dinh, SN Patek
    Research Article Updated

    Evolutionary theory suggests that individuals should express costly traits at a magnitude that optimizes the trait bearer’s cost-benefit difference. Trait expression varies across a species because costs and benefits vary among individuals. For example, if large individuals pay lower costs than small individuals, then larger individuals should reach optimal cost-benefit differences at greater trait magnitudes. Using the cavitation-shooting weapons found in the big claws of male and female snapping shrimp, we test whether size- and sex-dependent expenditures explain scaling and sex differences in weapon size. We found that males and females from three snapping shrimp species (Alpheus heterochaelis, Alpheus angulosus, and Alpheus estuariensis) show patterns consistent with tradeoffs between weapon and abdomen size. For male A. heterochaelis, the species for which we had the greatest statistical power, smaller individuals showed steeper tradeoffs. Our extensive dataset in A. heterochaelis also included data about pairing, breeding season, and egg clutch size. Therefore, we could test for reproductive tradeoffs and benefits in this species. Female A. heterochaelis exhibited tradeoffs between weapon size and egg count, average egg volume, and total egg mass volume. For average egg volume, smaller females exhibited steeper tradeoffs. Furthermore, in males but not females, large weapons were positively correlated with the probability of being paired and the relative size of their pair mates. In conclusion, we identified size-dependent tradeoffs that could underlie reliable scaling of costly traits. Furthermore, weapons are especially beneficial to males and burdensome to females, which could explain why males have larger weapons than females.

    1. Evolutionary Biology
    Anthony V Signore, Phillip R Morrison ... Kevin L Campbell
    Research Article

    The extinct Steller's sea cow (Hydrodamalis gigas; †1768) was a whale-sized marine mammal that manifested profound morphological specializations to exploit the harsh coastal climate of the North Pacific. Yet despite first-hand accounts of their biology, little is known regarding the physiological adjustments underlying their evolution to this environment. Here, the adult-expressed hemoglobin (Hb; a2β/δ2) of this sirenian is shown to harbor a fixed amino acid replacement at an otherwise invariant position (β/δ82Lys→Asn) that alters multiple aspects of Hb function. First, our functional characterization of recombinant sirenian Hb proteins demonstrate that the Hb-O2 affinity of this sub-Arctic species was less affected by temperature than those of living (sub)tropical sea cows. This phenotype presumably safeguarded O2 delivery to cool peripheral tissues and largely arises from a reduced intrinsic temperature sensitivity of the H. gigas protein. Additional experiments on H. gigas β/δ82Asn→Lys mutant Hb further reveal this exchange renders Steller's sea cow Hb unresponsive to the potent intraerythrocytic allosteric effector 2,3-diphosphoglycerate, a radical modification that is the first documented example of this phenotype among mammals. Notably, β/δ82Lys→Asn moreover underlies the secondary evolution of a reduced blood-O2 affinity phenotype that would have promoted heightened tissue and maternal/fetal O2 delivery. This conclusion is bolstered by analyses of two Steller's sea cow prenatal Hb proteins (Hb Gower I; z2e2 and HbF; a2g2) that suggest an exclusive embryonic stage expression pattern, and reveal uncommon replacements in H. gigas HbF (g38Thr→Ile and g101Glu→Asp) that increased Hb-O2 affinity relative to dugong HbF. Finally, the β/δ82Lys→Asn replacement of the adult/fetal protein is shown to increase protein solubility, which may have elevated red blood cell Hb content within both the adult and fetal circulations and contributed to meeting the elevated metabolic (thermoregulatory) requirements and fetal growth rates associated with this species cold adaptation.