Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1

  1. Colin LaMont
  2. Jakub Otwinowski
  3. Kanika Vanshylla
  4. Henning Gruell
  5. Florian Klein
  6. Armita Nourmohammad  Is a corresponding author
  1. Max Planck Institute for Dynamics and Self-Organization, Germany
  2. University of Cologne, Germany
  3. University of Washington, United States

Abstract

Infusion of broadly neutralizing antibodies (bNAbs) has shown promise as an alternative to anti-retroviral therapy against HIV. A key challenge is to suppress viral escape, which is more effectively achieved with a combination of bNAbs. Here, we propose a computational approach to predict the efficacy of a bNAb therapy based on the population genetics of HIV escape, which we parametrize using high-throughput HIV sequence data from bNAb-naive patients. By quantifying the mutational target size and the fitness cost of HIV-1 escape from bNAbs, we predict the distribution of rebound times in three clinical trials. We show that a cocktail of three bNAbs is necessary to effectively suppress viral escape, and predict the optimal composition of such bNAb cocktail. Our results offer a rational therapy design for HIV, and show how genetic data can be used to predict treatment outcomes and design new approaches to pathogenic control.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Reference to the previously published data used in this manuscript is provided. Modelling code is uploaded on GitHub at https://github.com/StatPhysBio/HIVTreatmentOptimization, and in the Julia package https://github.com/StatPhysBio/EscapeSimulator.

The following previously published data sets were used
    1. Zanini et al
    (2015) Project: PRJEB9618
    European Nucleotide Archive, Accession no: PRJEB9618.

Article and author information

Author details

  1. Colin LaMont

    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    No competing interests declared.
  2. Jakub Otwinowski

    Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    No competing interests declared.
  3. Kanika Vanshylla

    University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  4. Henning Gruell

    University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0725-7138
  5. Florian Klein

    University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  6. Armita Nourmohammad

    Department of Physics, University of Washington, Seattle, United States
    For correspondence
    armita@uw.edu
    Competing interests
    Armita Nourmohammad, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6245-3553

Funding

Deutsche Forschungsgemeinschaft (1310)

  • Armita Nourmohammad

National Science Foundation (2045054)

  • Armita Nourmohammad

1Max Planck Institute for Dynamics and Self-organization (open access funding)

  • Colin LaMont
  • Jakub Otwinowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, LaMont et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,794
    views
  • 537
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Colin LaMont
  2. Jakub Otwinowski
  3. Kanika Vanshylla
  4. Henning Gruell
  5. Florian Klein
  6. Armita Nourmohammad
(2022)
Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1
eLife 11:e76004.
https://doi.org/10.7554/eLife.76004

Share this article

https://doi.org/10.7554/eLife.76004

Further reading

    1. Evolutionary Biology
    Matthew Osmond, Graham Coop
    Research Article Updated

    Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation-by-distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here, we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60 km2/generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.

    1. Evolutionary Biology
    Dario Galanti, Jun Hee Jung ... Oliver Bossdorf
    Research Article

    Understanding the genomic basis of natural variation in plant pest resistance is an important goal in plant science, but it usually requires large and labor-intensive phenotyping experiments. Here, we explored the possibility that non-target reads from plant DNA sequencing can serve as phenotyping proxies for addressing such questions. We used data from a whole-genome and -epigenome sequencing study of 207 natural lines of field pennycress (Thlaspi arvense) that were grown in a common environment and spontaneously colonized by aphids, mildew, and other microbes. We found that the numbers of non-target reads assigned to the pest species differed between populations, had significant SNP-based heritability, and were associated with climate of origin and baseline glucosinolate contents. Specifically, pennycress lines from cold and thermally fluctuating habitats, presumably less favorable to aphids, showed higher aphid DNA load, i.e., decreased aphid resistance. Genome-wide association analyses identified genetic variants at known defense genes but also novel genomic regions associated with variation in aphid and mildew DNA load. Moreover, we found several differentially methylated regions associated with pathogen loads, in particular differential methylation at transposons and hypomethylation in the promoter of a gene involved in stomatal closure, likely induced by pathogens. Our study provides first insights into the defense mechanisms of Thlaspi arvense, a rising crop and model species, and demonstrates that non-target whole-genome sequencing reads, usually discarded, can be leveraged to estimate intensities of plant biotic interactions. With rapidly increasing numbers of large sequencing datasets worldwide, this approach should have broad application in fundamental and applied research.