Active site geometry stabilization of a presenilin homolog by the lipid bilayer promotes intramembrane proteolysis

  1. Lukas P Feilen
  2. Shu-Yu Chen
  3. Akio Fukumori
  4. Regina Feederle
  5. Martin Zacharias
  6. Harald Steiner  Is a corresponding author
  1. German Center for Neurodegenerative Diseases, Germany
  2. Technical University of Munich, Germany
  3. Osaka Medical and Pharmaceutical University, Japan
  4. Helmholtz Zentrum München, Germany
  5. Ludwig-Maximilians-Universität München, Germany

Abstract

Cleavage of membrane proteins in the lipid bilayer by intramembrane proteases is crucial for health and disease. Although different lipid environments can potently modulate their activity, how this is linked to their structural dynamics is unclear. Here we show that the carboxy-peptidase-like activity of the archaeal intramembrane protease PSH, a homolog of the Alzheimer's disease-associated presenilin/γ-secretase is impaired in micelles and promoted in a lipid bilayer. Comparative molecular dynamics simulations revealed that important elements for substrate binding such as transmembrane domain 6a of PSH are more labile in micelles and stabilized in the lipid bilayer. Moreover, consistent with an enhanced interaction of PSH with a transition-state analog inhibitor, the bilayer promoted the formation of the enzyme´s catalytic active site geometry. Our data indicate that the lipid environment of an intramembrane protease plays a critical role in structural stabilization and active site arrangement of the enzyme-substrate complex thereby promoting intramembrane proteolysis.

Data availability

For all figures the source data are provided in the respective source data files. The coordinate and trajectory files of all simulations can be accessed at Zenodo: https://doi.org/10.5281/zenodo.6487373

The following previously published data sets were used

Article and author information

Author details

  1. Lukas P Feilen

    German Center for Neurodegenerative Diseases, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8221-6742
  2. Shu-Yu Chen

    Physics Department T38, Technical University of Munich, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Akio Fukumori

    Department of Pharmacotherapeutics II, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Regina Feederle

    Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3981-367X
  5. Martin Zacharias

    Physics Department T38, Technical University of Munich, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Harald Steiner

    Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
    For correspondence
    harald.steiner@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3935-0318

Funding

Deutsche Forschungsgemeinschaft (263531414 / FOR2290)

  • Martin Zacharias
  • Harald Steiner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Feilen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,022
    views
  • 229
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukas P Feilen
  2. Shu-Yu Chen
  3. Akio Fukumori
  4. Regina Feederle
  5. Martin Zacharias
  6. Harald Steiner
(2022)
Active site geometry stabilization of a presenilin homolog by the lipid bilayer promotes intramembrane proteolysis
eLife 11:e76090.
https://doi.org/10.7554/eLife.76090

Share this article

https://doi.org/10.7554/eLife.76090

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.