Transversal functional connectivity and scene-specific processing in the human entorhinal-hippocampal circuitry

  1. Xenia Grande  Is a corresponding author
  2. Magdalena M Sauvage  Is a corresponding author
  3. Andreas Becke
  4. Emrah Düzel
  5. David Berron
  1. German Center for Neurodegenerative Diseases, Germany
  2. Leibniz Institute for Neurobiology, Germany
  3. Otto-von-Guericke University Magdeburg, Germany

Abstract

Scene and object information reach the entorhinal-hippocampal circuitry in partly segregated cortical processing streams. Converging evidence suggests that such information-specific streams organize the cortical - entorhinal interaction and the circuitry's inner communication along the transversal axis of hippocampal subiculum and CA1. Here, we leveraged ultra-high field functional imaging and advance Maass, Berron et al. (2015) who report two functional routes segregating the entorhinal cortex (EC) and the subiculum. We identify entorhinal subregions based on preferential functional connectivity with perirhinal Area 35 and 36, parahippocampal and retrosplenial cortical sources (referred to as ECArea35-based, ECArea36-based, ECPHC-based, ECRSC-based, respectively). Our data show specific scene processing in the functionally connected ECPHC-based and distal subiculum. Another route, that functionally connects the ECArea35-based and a newly identified ECRSC-based with the subiculum/CA1 border, however, shows no selectivity between object and scene conditions. Our results are consistent with transversal information-specific pathways in the human entorhinal-hippocampal circuitry, with anatomically organized convergence of cortical processing streams and a unique route for scene information. Our study thus further characterizes the functional organization of this circuitry and its information-specific role in memory function.

Data availability

Source data that contain numerical data used to generate Figure 2, Figure 3, Figure 4, Appendix 1 Figure 2, Appendix 1 Figure 3, Appendix 1 Figure 4, Appendix 5 Figure 1 as well as group-level statistical maps (referred to as Source Code 1-16) that underlie Figure 1, Figure 2, Appendix 1 Figure 1, Appendix 1 Figure 2, Appendix 3 Figure 1, Appendix 3 Figure 2 and Appendix 4 Figure 1 have been provided under:Open Science Framework. ID 9v3qp. https://osf.io/9v3qp

The following data sets were generated

Article and author information

Author details

  1. Xenia Grande

    German Center for Neurodegenerative Diseases, Magdeburg, Germany
    For correspondence
    xenia.grande@dzne.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2486-3201
  2. Magdalena M Sauvage

    Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany
    For correspondence
    Magdalena.Sauvage@lin-magdeburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7586-6410
  3. Andreas Becke

    Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Emrah Düzel

    Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. David Berron

    German Center for Neurodegenerative Diseases, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1558-1883

Funding

Horizon 2020 Research and Innovation Programme (785907 (HBP SGA2) and 945539 (HBP SGA3))

  • Emrah Düzel

Deutsche Forschungsgemeinschaft (Project-ID 42589994)

  • Magdalena M Sauvage
  • Emrah Düzel

HORIZON EUROPE Marie Sklodowska-Curie Actions (843074)

  • David Berron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent and consent to publish was obtained from human participants.The study received approval by the ethics committee of Otto-von-Guericke University, Magdeburg (Germany) under reference number 128/14.

Copyright

© 2022, Grande et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,182
    views
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xenia Grande
  2. Magdalena M Sauvage
  3. Andreas Becke
  4. Emrah Düzel
  5. David Berron
(2022)
Transversal functional connectivity and scene-specific processing in the human entorhinal-hippocampal circuitry
eLife 11:e76479.
https://doi.org/10.7554/eLife.76479

Share this article

https://doi.org/10.7554/eLife.76479

Further reading

    1. Neuroscience
    Cameron T Ellis, Tristan S Yates ... Nicholas Turk-Browne
    Research Article

    Studying infant minds with movies is a promising way to increase engagement relative to traditional tasks. However, the spatial specificity and functional significance of movie-evoked activity in infants remains unclear. Here, we investigated what movies can reveal about the organization of the infant visual system. We collected fMRI data from 15 awake infants and toddlers aged 5–23 months who attentively watched a movie. The activity evoked by the movie reflected the functional profile of visual areas. Namely, homotopic areas from the two hemispheres responded similarly to the movie, whereas distinct areas responded dissimilarly, especially across dorsal and ventral visual cortex. Moreover, visual maps that typically require time-intensive and complicated retinotopic mapping could be predicted, albeit imprecisely, from movie-evoked activity in both data-driven analyses (i.e. independent component analysis) at the individual level and by using functional alignment into a common low-dimensional embedding to generalize across participants. These results suggest that the infant visual system is already structured to process dynamic, naturalistic information and that fine-grained cortical organization can be discovered from movie data.

    1. Neuroscience
    Diellor Basha, Amirmohammad Azarmehri ... Igor Timofeev
    Research Article

    Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.