Transversal functional connectivity and scene-specific processing in the human entorhinal-hippocampal circuitry
Abstract
Scene and object information reach the entorhinal-hippocampal circuitry in partly segregated cortical processing streams. Converging evidence suggests that such information-specific streams organize the cortical - entorhinal interaction and the circuitry's inner communication along the transversal axis of hippocampal subiculum and CA1. Here, we leveraged ultra-high field functional imaging and advance Maass, Berron et al. (2015) who report two functional routes segregating the entorhinal cortex (EC) and the subiculum. We identify entorhinal subregions based on preferential functional connectivity with perirhinal Area 35 and 36, parahippocampal and retrosplenial cortical sources (referred to as ECArea35-based, ECArea36-based, ECPHC-based, ECRSC-based, respectively). Our data show specific scene processing in the functionally connected ECPHC-based and distal subiculum. Another route, that functionally connects the ECArea35-based and a newly identified ECRSC-based with the subiculum/CA1 border, however, shows no selectivity between object and scene conditions. Our results are consistent with transversal information-specific pathways in the human entorhinal-hippocampal circuitry, with anatomically organized convergence of cortical processing streams and a unique route for scene information. Our study thus further characterizes the functional organization of this circuitry and its information-specific role in memory function.
Data availability
Source data that contain numerical data used to generate Figure 2, Figure 3, Figure 4, Appendix 1 Figure 2, Appendix 1 Figure 3, Appendix 1 Figure 4, Appendix 5 Figure 1 as well as group-level statistical maps (referred to as Source Code 1-16) that underlie Figure 1, Figure 2, Appendix 1 Figure 1, Appendix 1 Figure 2, Appendix 3 Figure 1, Appendix 3 Figure 2 and Appendix 4 Figure 1 have been provided under:Open Science Framework. ID 9v3qp. https://osf.io/9v3qp
-
Source Data from Functional Connectivity and Information Processing in the Entorhinal-Hippocampal CircuitryOpen Science Framework. ID 9v3qp.
Article and author information
Author details
Funding
Horizon 2020 Research and Innovation Programme (785907 (HBP SGA2) and 945539 (HBP SGA3))
- Emrah Düzel
Deutsche Forschungsgemeinschaft (Project-ID 42589994)
- Magdalena M Sauvage
- Emrah Düzel
HORIZON EUROPE Marie Sklodowska-Curie Actions (843074)
- David Berron
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Informed consent and consent to publish was obtained from human participants.The study received approval by the ethics committee of Otto-von-Guericke University, Magdeburg (Germany) under reference number 128/14.
Copyright
© 2022, Grande et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,213
- views
-
- 327
- downloads
-
- 17
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 17
- citations for umbrella DOI https://doi.org/10.7554/eLife.76479