Estimating the potential to prevent locally acquired HIV infections in a UNAIDS Fast-Track City, Amsterdam

  1. Alexandra Blenkinsop  Is a corresponding author
  2. Mélodie Monod
  3. Ard van Sighem
  4. Nikos Pantazis
  5. Daniela Bezemer
  6. Eline Op de Coul
  7. Thijs van de Laar
  8. Christophe Fraser
  9. Maria Prins
  10. Peter Reiss
  11. Godelieve J de Bree
  12. Oliver Ratmann  Is a corresponding author
  1. Amsterdam Institute for Global Health and Development, Netherlands
  2. Imperial College London, United Kingdom
  3. Stichting HIV Monitoring, Netherlands
  4. University of Athens, Greece
  5. National Institute for Public Health and the Environment (RIVM), Netherlands
  6. Sanquin, Netherlands
  7. University of Oxford, United Kingdom
  8. Academic Medical Center, Netherlands
  9. Amsterdam University Medical Centers, Netherlands

Abstract

Background: More than 300 cities including the city of Amsterdam in the Netherlands have joined the UNAIDS Fast-Track Cities initiative, committing to accelerate their HIV response and end the AIDS epidemic in cities by 2030. To support this commitment, we aimed to estimate the number and proportion of Amsterdam HIV infections that originated within the city, from Amsterdam residents. We also aimed to estimate the proportion of recent HIV infections during the 5-year period 2014-2018 in Amsterdam that remained undiagnosed.

Methods: We located diagnosed HIV infections in Amsterdam using postcode data (PC4) at time of registration in the ATHENA observational HIV cohort, and used HIV sequence data to reconstruct phylogeographically distinct, partially observed Amsterdam transmission chains. Individual-level infection times were estimated from biomarker data, and used to date the phylogenetically observed transmission chains as well as to estimate undiagnosed proportions among recent infections. A Bayesian Negative Binomial branching process model was used to estimate the number, size and growth of the unobserved Amsterdam transmission chains from the partially observed phylogenetic data.

Results: Between January 1 2014 and May 1 2019, there were 846 HIV diagnoses in Amsterdam residents, of whom 516 (61%) were estimated to have been infected in 2014-2018. The rate of new Amsterdam diagnoses since 2014 (104 per 100,000) remained higher than the national rates excluding Amsterdam (24 per 100,000), and in this sense Amsterdam remained a HIV hotspot in the Netherlands. An estimated 14% [12-16%] of infections in Amsterdan MSM in 2014-2018 remained undiagnosed by May 1 2019, and 41% [35-48%] in Amsterdam heterosexuals, with variation by region of birth. An estimated 68% [61-74%] of Amsterdam MSM infections in 2014-2018 had an Amsterdam resident as source, and 57% [41-71%] in Amsterdam heterosexuals, with heterogeneity by region of birth. Of the locally acquired infections, an estimated 43% [37-49%] were in foreign-born MSM, 41% [35-47%] in Dutch-born MSM, 10% [6-18%] in foreign-born heterosexuals, and 5% [2-9%] in Dutch-born heterosexuals. We estimate the majority of Amsterdam MSM infections in 2014-2018 originated in transmission chains that pre-existed by 2014.

Conclusions: This combined phylogenetic, epidemiologic, and modelling analysis in the UNAIDS Fast-Track City Amsterdam indicates that there remains considerable potential to prevent HIV infections among Amsterdam residents through city-level interventions. The burden of locally acquired infection remains concentrated in MSM, and both Dutch-born and foreign-born MSM would likely benefit most from intensified city-level interventions.

Funding: This study received funding as part of the H-TEAM initiative from Aidsfonds (project number P29701). The H-TEAM initiative is being supported by Aidsfonds (grant number: 2013169, P29701, P60803), Stichting Amsterdam Dinner Foundation, Bristol-Myers Squibb International Corp. (study number: AI424-541), Gilead Sciences Europe Ltd (grant number: PA-HIV-PREP-16-0024), Gilead Sciences (protocol numbers: CO-NL-276-4222, CO-US-276-1712, CO-NL-985-6195), and M.A.C AIDS Fund.

Data availability

Anonymised data are available in the public Github repository https://github.com/alexblenkinsop/locally.acquired.infections. These include aggregated time-to-diagnosis data, and reconstructed phylogenetic trees labelled by one of the 9 Amsterdam risk groups and year of sequence sample. Statistical information or data for separate research purposes from the ATHENA cohort can be requested by submitting a research proposal (https://www.hiv-monitoring.nl/english/research/research-projects/). HIV physicians can review the data of their own treatment centre and compare these data with the full cohort through an online report builder. For correspondence: hiv.monitoring@amc.uva.nl.

Article and author information

Author details

  1. Alexandra Blenkinsop

    Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
    For correspondence
    a.blenkinsop@imperial.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2328-8671
  2. Mélodie Monod

    Department of Mathematics, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ard van Sighem

    Stichting HIV Monitoring, Amsterdam, Netherlands
    Competing interests
    Ard van Sighem, Funding for managing the ATHENA cohort is supported by a grant from the Dutch Ministry of Health, Welfare and Sport through the Centre for Infectious Disease Control of the National Institute for Public Health and the Environment.Received grants unrelated to this study from European Centre for Disease Prevention and Control paid to author's institution..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6656-0516
  4. Nikos Pantazis

    Department of Hygiene, Epidemiology and Medical Statistics, University of Athens, Athens, Greece
    Competing interests
    Nikos Pantazis, Received grants unrelated to this study from ECDC and Gilead Sciences Hellas, paid to author's institution. Received honoraria for presentations unrelated to this study from Gilead Sciences Hellas..
  5. Daniela Bezemer

    Stichting HIV Monitoring, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  6. Eline Op de Coul

    Center for Infectious Diseases Prevention and Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
    Competing interests
    No competing interests declared.
  7. Thijs van de Laar

    Department of Donor Medicine Research, Sanquin, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  8. Christophe Fraser

    Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Maria Prins

    Academic Medical Center, Amsterdam, Netherlands
    Competing interests
    Maria Prins, Received unrestricted research grants and speaker/ advisory fees from Gilead Sciences, Abbvie and MSD; all of which were paid to author's institute and were unrelated to this study..
  10. Peter Reiss

    Department of Global Health, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    Peter Reiss, Has received grants unrelated to this study from Gilead Sciences, ViiV Healthcare and Merck, paid to author's institution. Received Honoraria for lecture from Merck paid to institution. Received Honoraria from Gilead Sciences, ViiV Healthcare and Merck, paid to institution..
  11. Godelieve J de Bree

    Department of Global Health, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    Godelieve J de Bree, Received honoraria to her Institution for scientific advisory board participations for Gilead Sciences and speaker fees from Gilead Sciences (2019), Takeda (2018-2022) and ExeVir (2020-current)..
  12. Oliver Ratmann

    Department of Mathematics, Imperial College London, London, United Kingdom
    For correspondence
    oliver.ratmann05@imperial.ac.uk
    Competing interests
    No competing interests declared.

Funding

Aids Fonds (P29701)

  • Alexandra Blenkinsop
  • Godelieve J de Bree
  • Oliver Ratmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: As from 2002 ATHENA is managed by Stichting HIV Monitoring, the institution appointed by the Dutch Ministry of Public health, Welfare and Sport for the monitoring of people living with HIV in the Netherlands. People entering HIV care receive written material about participation in the ATHENA cohort and are informed by their treating physician on the purpose of data collection, thereafter they can consent verbally or elect to opt-out. Data are pseudonymised before being provided to investigators and may be used for scientific purposes. A designated data protection officer safeguards compliance with the European General Data Protection Regulation (Boender et al. 2018).

Reviewing Editor

  1. Joshua T Schiffer, Fred Hutchinson Cancer Research Center, United States

Publication history

  1. Received: December 17, 2021
  2. Preprint posted: March 15, 2022 (view preprint)
  3. Accepted: August 1, 2022
  4. Accepted Manuscript published: August 3, 2022 (version 1)
  5. Version of Record published: October 7, 2022 (version 2)

Copyright

© 2022, Blenkinsop et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 552
    Page views
  • 134
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandra Blenkinsop
  2. Mélodie Monod
  3. Ard van Sighem
  4. Nikos Pantazis
  5. Daniela Bezemer
  6. Eline Op de Coul
  7. Thijs van de Laar
  8. Christophe Fraser
  9. Maria Prins
  10. Peter Reiss
  11. Godelieve J de Bree
  12. Oliver Ratmann
(2022)
Estimating the potential to prevent locally acquired HIV infections in a UNAIDS Fast-Track City, Amsterdam
eLife 11:e76487.
https://doi.org/10.7554/eLife.76487

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Oliver Robinson, Chung-Ho E Lau ... Martine Vrijheid
    Research Article

    Background: While biological age in adults is often understood as representing general health and resilience, the conceptual interpretation of accelerated biological age in children and its relationship to development remains unclear. We aimed to clarify the relationship of accelerated biological age, assessed through two established biological age indicators, telomere length and DNA methylation age, and two novel candidate biological age indicators , to child developmental outcomes, including growth and adiposity, cognition, behaviour, lung function and onset of puberty, among European school-age children participating in the HELIX exposome cohort.

    Methods: The study population included up to 1,173 children, aged between 5 and 12 years, from study centres in the UK, France, Spain, Norway, Lithuania, and Greece. Telomere length was measured through qPCR, blood DNA methylation and gene expression was measured using microarray, and proteins and metabolites were measured by a range of targeted assays. DNA methylation age was assessed using Horvath's skin and blood clock, while novel blood transcriptome and 'immunometabolic' (based on plasma protein and urinary and serum metabolite data) clocks were derived and tested in a subset of children assessed six months after the main follow-up visit. Associations between biological age indicators with child developmental measures as well as health risk factors were estimated using linear regression, adjusted for chronological age, sex, ethnicity and study centre. The clock derived markers were expressed as Δ age (i.e., predicted minus chronological age).

    Results: Transcriptome and immunometabolic clocks predicted chronological age well in the test set (r= 0.93 and r= 0.84 respectively). Generally, weak correlations were observed, after adjustment for chronological age, between the biological age indicators. Among associations with health risk factors, higher birthweight was associated with greater immunometabolic Δ age, smoke exposure with greater DNA methylation Δ age and high family affluence with longer telomere length. Among associations with child developmental measures, all biological age markers were associated with greater BMI and fat mass, and all markers except telomere length were associated with greater height, at least at nominal significance (p<0.05). Immunometabolic Δ age was associated with better working memory (p = 4e -3) and reduced inattentiveness (p= 4e -4), while DNA methylation Δ age was associated with greater inattentiveness (p=0.03) and poorer externalizing behaviours (p= 0.01). Shorter telomere length was also associated with poorer externalizing behaviours (p=0.03).

    Conclusions: In children, as in adults, biological ageing appears to be a multi-faceted process and adiposity is an important correlate of accelerated biological ageing. Patterns of associations suggested that accelerated immunometabolic age may be beneficial for some aspects of child development while accelerated DNA methylation age and telomere attrition may reflect early detrimental aspects of biological ageing, apparent even in children.

    Funding: UK Research and Innovation (MR/S03532X/1); European Commission (grant agreement numbers: 308333; 874583).

    1. Epidemiology and Global Health
    Katharine Sherratt, Hugo Gruson ... Sebastian Funk
    Research Article Updated

    Background:

    Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.

    Methods:

    We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.

    Results:

    Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.

    Conclusions:

    Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.

    Funding:

    AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).