Estimating the potential to prevent locally acquired HIV infections in a UNAIDS Fast-Track City, Amsterdam

  1. Alexandra Blenkinsop  Is a corresponding author
  2. Mélodie Monod
  3. Ard van Sighem
  4. Nikos Pantazis
  5. Daniela Bezemer
  6. Eline Op de Coul
  7. Thijs van de Laar
  8. Christophe Fraser
  9. Maria Prins
  10. Peter Reiss
  11. Godelieve J de Bree
  12. Oliver Ratmann  Is a corresponding author
  1. Amsterdam Institute for Global Health and Development, Netherlands
  2. Imperial College London, United Kingdom
  3. Stichting HIV Monitoring, Netherlands
  4. University of Athens, Greece
  5. National Institute for Public Health and the Environment (RIVM), Netherlands
  6. Sanquin, Netherlands
  7. University of Oxford, United Kingdom
  8. Academic Medical Center, Netherlands
  9. Amsterdam University Medical Centers, Netherlands

Abstract

Background: More than 300 cities including the city of Amsterdam in the Netherlands have joined the UNAIDS Fast-Track Cities initiative, committing to accelerate their HIV response and end the AIDS epidemic in cities by 2030. To support this commitment, we aimed to estimate the number and proportion of Amsterdam HIV infections that originated within the city, from Amsterdam residents. We also aimed to estimate the proportion of recent HIV infections during the 5-year period 2014-2018 in Amsterdam that remained undiagnosed.

Methods: We located diagnosed HIV infections in Amsterdam using postcode data (PC4) at time of registration in the ATHENA observational HIV cohort, and used HIV sequence data to reconstruct phylogeographically distinct, partially observed Amsterdam transmission chains. Individual-level infection times were estimated from biomarker data, and used to date the phylogenetically observed transmission chains as well as to estimate undiagnosed proportions among recent infections. A Bayesian Negative Binomial branching process model was used to estimate the number, size and growth of the unobserved Amsterdam transmission chains from the partially observed phylogenetic data.

Results: Between January 1 2014 and May 1 2019, there were 846 HIV diagnoses in Amsterdam residents, of whom 516 (61%) were estimated to have been infected in 2014-2018. The rate of new Amsterdam diagnoses since 2014 (104 per 100,000) remained higher than the national rates excluding Amsterdam (24 per 100,000), and in this sense Amsterdam remained a HIV hotspot in the Netherlands. An estimated 14% [12-16%] of infections in Amsterdan MSM in 2014-2018 remained undiagnosed by May 1 2019, and 41% [35-48%] in Amsterdam heterosexuals, with variation by region of birth. An estimated 68% [61-74%] of Amsterdam MSM infections in 2014-2018 had an Amsterdam resident as source, and 57% [41-71%] in Amsterdam heterosexuals, with heterogeneity by region of birth. Of the locally acquired infections, an estimated 43% [37-49%] were in foreign-born MSM, 41% [35-47%] in Dutch-born MSM, 10% [6-18%] in foreign-born heterosexuals, and 5% [2-9%] in Dutch-born heterosexuals. We estimate the majority of Amsterdam MSM infections in 2014-2018 originated in transmission chains that pre-existed by 2014.

Conclusions: This combined phylogenetic, epidemiologic, and modelling analysis in the UNAIDS Fast-Track City Amsterdam indicates that there remains considerable potential to prevent HIV infections among Amsterdam residents through city-level interventions. The burden of locally acquired infection remains concentrated in MSM, and both Dutch-born and foreign-born MSM would likely benefit most from intensified city-level interventions.

Funding: This study received funding as part of the H-TEAM initiative from Aidsfonds (project number P29701). The H-TEAM initiative is being supported by Aidsfonds (grant number: 2013169, P29701, P60803), Stichting Amsterdam Dinner Foundation, Bristol-Myers Squibb International Corp. (study number: AI424-541), Gilead Sciences Europe Ltd (grant number: PA-HIV-PREP-16-0024), Gilead Sciences (protocol numbers: CO-NL-276-4222, CO-US-276-1712, CO-NL-985-6195), and M.A.C AIDS Fund.

Data availability

Anonymised data are available in the public Github repository https://github.com/alexblenkinsop/locally.acquired.infections. These include aggregated time-to-diagnosis data, and reconstructed phylogenetic trees labelled by one of the 9 Amsterdam risk groups and year of sequence sample. Statistical information or data for separate research purposes from the ATHENA cohort can be requested by submitting a research proposal (https://www.hiv-monitoring.nl/english/research/research-projects/). HIV physicians can review the data of their own treatment centre and compare these data with the full cohort through an online report builder. For correspondence: hiv.monitoring@amc.uva.nl.

Article and author information

Author details

  1. Alexandra Blenkinsop

    Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
    For correspondence
    a.blenkinsop@imperial.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2328-8671
  2. Mélodie Monod

    Department of Mathematics, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ard van Sighem

    Stichting HIV Monitoring, Amsterdam, Netherlands
    Competing interests
    Ard van Sighem, Funding for managing the ATHENA cohort is supported by a grant from the Dutch Ministry of Health, Welfare and Sport through the Centre for Infectious Disease Control of the National Institute for Public Health and the Environment.Received grants unrelated to this study from European Centre for Disease Prevention and Control paid to author's institution..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6656-0516
  4. Nikos Pantazis

    Department of Hygiene, Epidemiology and Medical Statistics, University of Athens, Athens, Greece
    Competing interests
    Nikos Pantazis, Received grants unrelated to this study from ECDC and Gilead Sciences Hellas, paid to author's institution. Received honoraria for presentations unrelated to this study from Gilead Sciences Hellas..
  5. Daniela Bezemer

    Stichting HIV Monitoring, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  6. Eline Op de Coul

    Center for Infectious Diseases Prevention and Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
    Competing interests
    No competing interests declared.
  7. Thijs van de Laar

    Department of Donor Medicine Research, Sanquin, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  8. Christophe Fraser

    Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Maria Prins

    Academic Medical Center, Amsterdam, Netherlands
    Competing interests
    Maria Prins, Received unrestricted research grants and speaker/ advisory fees from Gilead Sciences, Abbvie and MSD; all of which were paid to author's institute and were unrelated to this study..
  10. Peter Reiss

    Department of Global Health, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    Peter Reiss, Has received grants unrelated to this study from Gilead Sciences, ViiV Healthcare and Merck, paid to author's institution. Received Honoraria for lecture from Merck paid to institution. Received Honoraria from Gilead Sciences, ViiV Healthcare and Merck, paid to institution..
  11. Godelieve J de Bree

    Department of Global Health, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    Godelieve J de Bree, Received honoraria to her Institution for scientific advisory board participations for Gilead Sciences and speaker fees from Gilead Sciences (2019), Takeda (2018-2022) and ExeVir (2020-current)..
  12. Oliver Ratmann

    Department of Mathematics, Imperial College London, London, United Kingdom
    For correspondence
    oliver.ratmann05@imperial.ac.uk
    Competing interests
    No competing interests declared.

Funding

Aids Fonds (P29701)

  • Alexandra Blenkinsop
  • Godelieve J de Bree
  • Oliver Ratmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: As from 2002 ATHENA is managed by Stichting HIV Monitoring, the institution appointed by the Dutch Ministry of Public health, Welfare and Sport for the monitoring of people living with HIV in the Netherlands. People entering HIV care receive written material about participation in the ATHENA cohort and are informed by their treating physician on the purpose of data collection, thereafter they can consent verbally or elect to opt-out. Data are pseudonymised before being provided to investigators and may be used for scientific purposes. A designated data protection officer safeguards compliance with the European General Data Protection Regulation (Boender et al. 2018).

Copyright

© 2022, Blenkinsop et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,105
    views
  • 178
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandra Blenkinsop
  2. Mélodie Monod
  3. Ard van Sighem
  4. Nikos Pantazis
  5. Daniela Bezemer
  6. Eline Op de Coul
  7. Thijs van de Laar
  8. Christophe Fraser
  9. Maria Prins
  10. Peter Reiss
  11. Godelieve J de Bree
  12. Oliver Ratmann
(2022)
Estimating the potential to prevent locally acquired HIV infections in a UNAIDS Fast-Track City, Amsterdam
eLife 11:e76487.
https://doi.org/10.7554/eLife.76487

Share this article

https://doi.org/10.7554/eLife.76487

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.