Functional requirements for a Samd14-capping protein complex in stress erythropoiesis

  1. Suhita Ray
  2. Linda Chee
  3. Yichao Zhou
  4. Meg A Schaefer
  5. Michael J Naldrett
  6. Sophie Alvarez
  7. Nicholas T Woods
  8. Kyle Hewitt  Is a corresponding author
  1. University of Nebraska Medical Center, United States
  2. University of Nebraska-Lincoln, United States

Abstract

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals involving cooperation between SCF/Kit signaling and other signaling inputs are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the Sterile Alpha Motif (SAM) Domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system in a mouse genetic model and promotes stress-dependent Kit signaling. However, the mechanism underlying Samd14's role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β heterodimers of the F-actin capping protein (CP) complex. Knockdown of the CP β subunit increased erythroid maturation in murine ex vivo cultures and decreased colony forming potential of stress erythroid precursors. In a genetic complementation assay for Samd14 activity, our results revealed that the Samd14-CP interaction is a determinant of erythroid precursor cell levels and function. Samd14-CP promotes SCF/Kit signaling in CD71med spleen erythroid precursors. Given the roles of Kit signaling in hematopoiesis and Samd14 in Kit pathway activation, this mechanism may have pathological implications in acute/chronic anemia.

Data availability

The mass spectrometry proteomics data was deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al, 2019) partner repository with the dataset identifier PXD030467 and 10.6019/PXD030467. All other data generated or analysed during this study are included in the manuscript and supporting file.

The following previously published data sets were used

Article and author information

Author details

  1. Suhita Ray

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0887-6640
  2. Linda Chee

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yichao Zhou

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Meg A Schaefer

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael J Naldrett

    Proteomics and Metabolomics Facility, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sophie Alvarez

    Proteomics and Metabolomics Facility, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicholas T Woods

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kyle Hewitt

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    For correspondence
    kyle.hewitt@unmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1946-625X

Funding

NHLBI Division of Intramural Research (R01 HL155439-01)

  • Suhita Ray
  • Linda Chee
  • Yichao Zhou
  • Meg A Schaefer
  • Kyle Hewitt

GMS (1P20GM121316-01-A1)

  • Kyle Hewitt

Nebraska Stem Cell Research (LB606)

  • Suhita Ray
  • Linda Chee
  • Yichao Zhou
  • Meg A Schaefer
  • Michael J Naldrett
  • Sophie Alvarez
  • Nicholas T Woods
  • Kyle Hewitt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#18-099-08 FC) of the University of Nebraska Medical Center.

Reviewing Editor

  1. Jian Xu, University of Texas Southwestern Medical Center, United States

Publication history

  1. Received: December 17, 2021
  2. Accepted: June 6, 2022
  3. Accepted Manuscript published: June 17, 2022 (version 1)

Copyright

© 2022, Ray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 286
    Page views
  • 92
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suhita Ray
  2. Linda Chee
  3. Yichao Zhou
  4. Meg A Schaefer
  5. Michael J Naldrett
  6. Sophie Alvarez
  7. Nicholas T Woods
  8. Kyle Hewitt
(2022)
Functional requirements for a Samd14-capping protein complex in stress erythropoiesis
eLife 11:e76497.
https://doi.org/10.7554/eLife.76497

Further reading

    1. Cell Biology
    Fangrui Chen et al.
    Research Article

    The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole-independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152 or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus-end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement.

    1. Cell Biology
    2. Physics of Living Systems
    Danielle Holz et al.
    Research Article Updated

    Single molecule imaging has shown that part of actin disassembles within a few seconds after incorporation into the dendritic filament network in lamellipodia, suggestive of frequent destabilization near barbed ends. To investigate the mechanisms behind network remodeling, we created a stochastic model with polymerization, depolymerization, branching, capping, uncapping, severing, oligomer diffusion, annealing, and debranching. We find that filament severing, enhanced near barbed ends, can explain the single molecule actin lifetime distribution, if oligomer fragments reanneal to free ends with rate constants comparable to in vitro measurements. The same mechanism leads to actin networks consistent with measured filament, end, and branch concentrations. These networks undergo structural remodeling, leading to longer filaments away from the leading edge, at the +/-35° orientation pattern. Imaging of actin speckle lifetimes at sub-second resolution verifies frequent disassembly of newly-assembled actin. We thus propose a unified mechanism that fits a diverse set of basic lamellipodia phenomenology.