Drosophila mechanical nociceptors preferentially sense localized poking

Abstract

Mechanical nociception is an evolutionarily conserved sensory process required for the survival of living organisms. Previous studies have revealed much about the neural circuits and sensory molecules in mechanical nociception, but the cellular mechanisms adopted by nociceptors in force detection remain elusive. To address this issue, we study the mechanosensation of a fly larval nociceptor (class IV da neurons, c4da) using a customized mechanical device. We find that c4da are sensitive to mN-scale forces and make uniform responses to the forces applied at different dendritic regions. Moreover, c4da showed a greater sensitivity to localized forces, consistent with them being able to detect the poking of sharp objects, such as wasp ovipositor. Further analysis reveals that high morphological complexity, mechanosensitivity to lateral tension and possibly also active signal propagation in dendrites contribute to the sensory features of c4da. In particular, we discover that Piezo and Ppk1/Ppk26, two key mechanosensory molecules, make differential but additive contributions to the mechanosensitivity of c4da. In all, our results provide updates into understanding how c4da process mechanical signals at the cellular level and reveal the contributions of key molecules.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The source data for all plots have been provided as Excel files.

The following previously published data sets were used

Article and author information

Author details

  1. Zhen Liu

    School of Life Sciences, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Meng-Hua Wu

    School of Life Sciences, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qi-Xuan Wang

    School of Life Sciences, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shao-Zhen Lin

    Department of Engineering Mechanics, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xi-Xiao Feng

    Department of Engineering Mechanics, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Bo Li

    Department of Engineering Mechanics, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xin Liang

    School of Life Sciences, Tsinghua University, Tsinghua, China
    For correspondence
    xinliang@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7915-8094

Funding

National Natural Science Foundation of China (31922018)

  • Xin Liang

National Natural Science Foundation of China (32070704)

  • Xin Liang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthieu Louis, University of California, Santa Barbara, United States

Version history

  1. Received: December 21, 2021
  2. Preprint posted: January 5, 2022 (view preprint)
  3. Accepted: October 5, 2022
  4. Accepted Manuscript published: October 6, 2022 (version 1)
  5. Accepted Manuscript updated: October 7, 2022 (version 2)
  6. Version of Record published: November 21, 2022 (version 3)

Copyright

© 2022, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,029
    Page views
  • 282
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhen Liu
  2. Meng-Hua Wu
  3. Qi-Xuan Wang
  4. Shao-Zhen Lin
  5. Xi-Xiao Feng
  6. Bo Li
  7. Xin Liang
(2022)
Drosophila mechanical nociceptors preferentially sense localized poking
eLife 11:e76574.
https://doi.org/10.7554/eLife.76574

Further reading

    1. Neuroscience
    Christian Brodbeck, Proloy Das ... Jonathan Z Simon
    Tools and Resources

    Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: 1) Is there a significant neural representation corresponding to this predictor variable? And if so, 2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.

    1. Neuroscience
    Louise Schenberg, Aïda Palou ... Mathieu Beraneck
    Research Article

    The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but not type II, hair cells correlates with functional impairments. The decrease in VOR performance is paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Comparison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in pathologies with fluctuating peripheral vestibular malfunction.