Drosophila mechanical nociceptors preferentially sense localized poking

Abstract

Mechanical nociception is an evolutionarily conserved sensory process required for the survival of living organisms. Previous studies have revealed much about the neural circuits and sensory molecules in mechanical nociception, but the cellular mechanisms adopted by nociceptors in force detection remain elusive. To address this issue, we study the mechanosensation of a fly larval nociceptor (class IV da neurons, c4da) using a customized mechanical device. We find that c4da are sensitive to mN-scale forces and make uniform responses to the forces applied at different dendritic regions. Moreover, c4da showed a greater sensitivity to localized forces, consistent with them being able to detect the poking of sharp objects, such as wasp ovipositor. Further analysis reveals that high morphological complexity, mechanosensitivity to lateral tension and possibly also active signal propagation in dendrites contribute to the sensory features of c4da. In particular, we discover that Piezo and Ppk1/Ppk26, two key mechanosensory molecules, make differential but additive contributions to the mechanosensitivity of c4da. In all, our results provide updates into understanding how c4da process mechanical signals at the cellular level and reveal the contributions of key molecules.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The source data for all plots have been provided as Excel files.

The following previously published data sets were used

Article and author information

Author details

  1. Zhen Liu

    School of Life Sciences, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Meng-Hua Wu

    School of Life Sciences, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qi-Xuan Wang

    School of Life Sciences, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shao-Zhen Lin

    Department of Engineering Mechanics, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xi-Xiao Feng

    Department of Engineering Mechanics, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Bo Li

    Department of Engineering Mechanics, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xin Liang

    School of Life Sciences, Tsinghua University, Tsinghua, China
    For correspondence
    xinliang@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7915-8094

Funding

National Natural Science Foundation of China (31922018)

  • Xin Liang

National Natural Science Foundation of China (32070704)

  • Xin Liang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthieu Louis, University of California, Santa Barbara, United States

Version history

  1. Received: December 21, 2021
  2. Preprint posted: January 5, 2022 (view preprint)
  3. Accepted: October 5, 2022
  4. Accepted Manuscript published: October 6, 2022 (version 1)
  5. Accepted Manuscript updated: October 7, 2022 (version 2)
  6. Version of Record published: November 21, 2022 (version 3)

Copyright

© 2022, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,162
    views
  • 301
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhen Liu
  2. Meng-Hua Wu
  3. Qi-Xuan Wang
  4. Shao-Zhen Lin
  5. Xi-Xiao Feng
  6. Bo Li
  7. Xin Liang
(2022)
Drosophila mechanical nociceptors preferentially sense localized poking
eLife 11:e76574.
https://doi.org/10.7554/eLife.76574

Share this article

https://doi.org/10.7554/eLife.76574

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Donghui Yan, Bowen Hu ... Qiongshi Lu
    Research Article

    Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer’s disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.