Drosophila mechanical nociceptors preferentially sense localized poking

Abstract

Mechanical nociception is an evolutionarily conserved sensory process required for the survival of living organisms. Previous studies have revealed much about the neural circuits and sensory molecules in mechanical nociception, but the cellular mechanisms adopted by nociceptors in force detection remain elusive. To address this issue, we study the mechanosensation of a fly larval nociceptor (class IV da neurons, c4da) using a customized mechanical device. We find that c4da are sensitive to mN-scale forces and make uniform responses to the forces applied at different dendritic regions. Moreover, c4da showed a greater sensitivity to localized forces, consistent with them being able to detect the poking of sharp objects, such as wasp ovipositor. Further analysis reveals that high morphological complexity, mechanosensitivity to lateral tension and possibly also active signal propagation in dendrites contribute to the sensory features of c4da. In particular, we discover that Piezo and Ppk1/Ppk26, two key mechanosensory molecules, make differential but additive contributions to the mechanosensitivity of c4da. In all, our results provide updates into understanding how c4da process mechanical signals at the cellular level and reveal the contributions of key molecules.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The source data for all plots have been provided as Excel files.

The following previously published data sets were used

Article and author information

Author details

  1. Zhen Liu

    School of Life Sciences, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Meng-Hua Wu

    School of Life Sciences, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qi-Xuan Wang

    School of Life Sciences, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shao-Zhen Lin

    Department of Engineering Mechanics, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xi-Qiao Feng

    Department of Engineering Mechanics, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Bo Li

    Department of Engineering Mechanics, Tsinghua University, Tsinghua, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xin Liang

    School of Life Sciences, Tsinghua University, Tsinghua, China
    For correspondence
    xinliang@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7915-8094

Funding

National Natural Science Foundation of China (31922018)

  • Xin Liang

National Natural Science Foundation of China (32070704)

  • Xin Liang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthieu Louis, University of California, Santa Barbara, United States

Version history

  1. Received: December 21, 2021
  2. Preprint posted: January 5, 2022 (view preprint)
  3. Accepted: October 5, 2022
  4. Accepted Manuscript published: October 6, 2022 (version 1)
  5. Accepted Manuscript updated: October 7, 2022 (version 2)
  6. Version of Record published: November 21, 2022 (version 3)

Copyright

© 2022, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,151
    views
  • 300
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhen Liu
  2. Meng-Hua Wu
  3. Qi-Xuan Wang
  4. Shao-Zhen Lin
  5. Xi-Qiao Feng
  6. Bo Li
  7. Xin Liang
(2022)
Drosophila mechanical nociceptors preferentially sense localized poking
eLife 11:e76574.
https://doi.org/10.7554/eLife.76574

Share this article

https://doi.org/10.7554/eLife.76574

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Medicine
    2. Neuroscience
    Yunlu Xue, Yimin Zhou, Constance L Cepko
    Research Advance

    Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP’s structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.