Generation of vascularized brain organoids to study neurovascular interactions

  1. Xin-Yao Sun
  2. Xiang-Chun Ju  Is a corresponding author
  3. Yang Li
  4. Peng-Ming Zeng
  5. Jian Wu
  6. Ying-Ying Zhou
  7. Li-Bing Shen
  8. Jian Dong
  9. Yuejun Chen
  10. Zhen-Ge Luo  Is a corresponding author
  1. ShanghaiTech University, China
  2. Chinese Academy of Sciences, China

Abstract

Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures, and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood-brain-barrier (BBB)-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, in particular the vasculature and microglia niche.

Data availability

Single cell RNA sequencing transcriptome data supporting this study have been deposited in NCBI Sequence Read Archive (SRA) repository (https://www.ncbi.nlm.nih.gov/sra) with accession number SRP338043 (VOR: SRR15992286; VOR2:SRR15992285).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xin-Yao Sun

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiang-Chun Ju

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    xiangchun.ju@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Yang Li

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Peng-Ming Zeng

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jian Wu

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ying-Ying Zhou

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Li-Bing Shen

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jian Dong

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuejun Chen

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhen-Ge Luo

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    For correspondence
    luozhg@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5037-0542

Funding

National Key Research and Development Program of China (PI,2021ZD0202500)

  • Zhen-Ge Luo

National Natural Science Foundation of China (PI,32130035)

  • Zhen-Ge Luo

National Natural Science Foundation of China (PI,92168107)

  • Zhen-Ge Luo

National Natural Science Foundation of China (PI,31871034)

  • Xiang-Chun Ju

Chinese Academy of Sciences Key Project (PI,QYZDJ-SSW-SMC025)

  • Zhen-Ge Luo

Shanghai Municipal People's Government (Co-I,2018SHZDZX05)

  • Zhen-Ge Luo

Shanghai Municipal People's Government (PI,201409001700)

  • Zhen-Ge Luo

National Key Research and Development Program of China (Co-I,2017YFA0700500)

  • Xiang-Chun Ju

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,890
    views
  • 2,994
    downloads
  • 124
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin-Yao Sun
  2. Xiang-Chun Ju
  3. Yang Li
  4. Peng-Ming Zeng
  5. Jian Wu
  6. Ying-Ying Zhou
  7. Li-Bing Shen
  8. Jian Dong
  9. Yuejun Chen
  10. Zhen-Ge Luo
(2022)
Generation of vascularized brain organoids to study neurovascular interactions
eLife 11:e76707.
https://doi.org/10.7554/eLife.76707

Share this article

https://doi.org/10.7554/eLife.76707

Further reading

    1. Neuroscience
    Piermatteo Morucci, Sanjeev Nara ... Nicola Molinaro
    Research Article

    Perceptual systems heavily rely on prior knowledge and predictions to make sense of the environment. Predictions can originate from multiple sources of information, including contextual short-term priors, based on isolated temporal situations, and context-independent long-term priors, arising from extended exposure to statistical regularities. While the effects of short-term predictions on auditory perception have been well-documented, how long-term predictions shape early auditory processing is poorly understood. To address this, we recorded magnetoencephalography data from native speakers of two languages with different word orders (Spanish: functor-initial vs Basque: functor-final) listening to simple sequences of binary sounds alternating in duration with occasional omissions. We hypothesized that, together with contextual transition probabilities, the auditory system uses the characteristic prosodic cues (duration) associated with the native language’s word order as an internal model to generate long-term predictions about incoming non-linguistic sounds. Consistent with our hypothesis, we found that the amplitude of the mismatch negativity elicited by sound omissions varied orthogonally depending on the speaker’s linguistic background and was most pronounced in the left auditory cortex. Importantly, listening to binary sounds alternating in pitch instead of duration did not yield group differences, confirming that the above results were driven by the hypothesized long-term ‘duration’ prior. These findings show that experience with a given language can shape a fundamental aspect of human perception – the neural processing of rhythmic sounds – and provides direct evidence for a long-term predictive coding system in the auditory cortex that uses auditory schemes learned over a lifetime to process incoming sound sequences.

    1. Cell Biology
    2. Neuroscience
    Luting Yang, Chunqing Hu ... Yaping Yan
    Research Article

    Reactive astrocytes play critical roles in the occurrence of various neurological diseases such as multiple sclerosis. Activation of astrocytes is often accompanied by a glycolysis-dominant metabolic switch. However, the role and molecular mechanism of metabolic reprogramming in activation of astrocytes have not been clarified. Here, we found that PKM2, a rate-limiting enzyme of glycolysis, displayed nuclear translocation in astrocytes of EAE (experimental autoimmune encephalomyelitis) mice, an animal model of multiple sclerosis. Prevention of PKM2 nuclear import by DASA-58 significantly reduced the activation of mice primary astrocytes, which was observed by decreased proliferation, glycolysis and secretion of inflammatory cytokines. Most importantly, we identified the ubiquitination-mediated regulation of PKM2 nuclear import by ubiquitin ligase TRIM21. TRIM21 interacted with PKM2, promoted its nuclear translocation and stimulated its nuclear activity to phosphorylate STAT3, NF-κB and interact with c-myc. Further single-cell RNA sequencing and immunofluorescence staining demonstrated that TRIM21 expression was upregulated in astrocytes of EAE. TRIM21 overexpressing in mice primary astrocytes enhanced PKM2-dependent glycolysis and proliferation, which could be reversed by DASA-58. Moreover, intracerebroventricular injection of a lentiviral vector to knockdown TRIM21 in astrocytes or intraperitoneal injection of TEPP-46, which inhibit the nuclear translocation of PKM2, effectively decreased disease severity, CNS inflammation and demyelination in EAE. Collectively, our study provides novel insights into the pathological function of nuclear glycolytic enzyme PKM2 and ubiquitination-mediated regulatory mechanism that are involved in astrocyte activation. Targeting this axis may be a potential therapeutic strategy for the treatment of astrocyte-involved neurological disease.