Generation of vascularized brain organoids to study neurovascular interactions

  1. Xin-Yao Sun
  2. Xiang-Chun Ju  Is a corresponding author
  3. Yang Li
  4. Peng-Ming Zeng
  5. Jian Wu
  6. Ying-Ying Zhou
  7. Li-Bing Shen
  8. Jian Dong
  9. Yuejun Chen
  10. Zhen-Ge Luo  Is a corresponding author
  1. ShanghaiTech University, China
  2. Chinese Academy of Sciences, China

Abstract

Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures, and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood-brain-barrier (BBB)-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, in particular the vasculature and microglia niche.

Data availability

Single cell RNA sequencing transcriptome data supporting this study have been deposited in NCBI Sequence Read Archive (SRA) repository (https://www.ncbi.nlm.nih.gov/sra) with accession number SRP338043 (VOR: SRR15992286; VOR2:SRR15992285).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xin-Yao Sun

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiang-Chun Ju

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    xiangchun.ju@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Yang Li

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Peng-Ming Zeng

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jian Wu

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ying-Ying Zhou

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Li-Bing Shen

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jian Dong

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuejun Chen

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhen-Ge Luo

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    For correspondence
    luozhg@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5037-0542

Funding

National Key Research and Development Program of China (PI,2021ZD0202500)

  • Zhen-Ge Luo

National Natural Science Foundation of China (PI,32130035)

  • Zhen-Ge Luo

National Natural Science Foundation of China (PI,92168107)

  • Zhen-Ge Luo

National Natural Science Foundation of China (PI,31871034)

  • Xiang-Chun Ju

Chinese Academy of Sciences Key Project (PI,QYZDJ-SSW-SMC025)

  • Zhen-Ge Luo

Shanghai Municipal People's Government (Co-I,2018SHZDZX05)

  • Zhen-Ge Luo

Shanghai Municipal People's Government (PI,201409001700)

  • Zhen-Ge Luo

National Key Research and Development Program of China (Co-I,2017YFA0700500)

  • Xiang-Chun Ju

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,461
    views
  • 3,176
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin-Yao Sun
  2. Xiang-Chun Ju
  3. Yang Li
  4. Peng-Ming Zeng
  5. Jian Wu
  6. Ying-Ying Zhou
  7. Li-Bing Shen
  8. Jian Dong
  9. Yuejun Chen
  10. Zhen-Ge Luo
(2022)
Generation of vascularized brain organoids to study neurovascular interactions
eLife 11:e76707.
https://doi.org/10.7554/eLife.76707

Share this article

https://doi.org/10.7554/eLife.76707

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.