Repressor element 1-silencing transcription factor deficiency yields profound hearing loss through Kv7.4 channel upsurge in auditory neurons and hair cells

  1. Haiwei Zhang
  2. Hongchen Li
  3. Mingshun Lu
  4. Shengnan Wang
  5. Xueya Ma
  6. Fei Wang
  7. Jiaxi Liu
  8. Xinyu Li
  9. Haichao Yang
  10. Fan Zhang
  11. Haitao Shen
  12. Noel J Buckley
  13. Nikita Gamper
  14. Ebenezer N Yamoah  Is a corresponding author
  15. Ping Lv  Is a corresponding author
  1. Hebei Medical University, China
  2. University of Oxford, United Kingdom
  3. University of Leeds, United Kingdom
  4. University of Nevada Reno, United States

Abstract

Repressor element 1-silencing transcription factor (REST) is a transcriptional repressor that recognizes neuron-restrictive silencer elements in the mammalian genomes in a tissue- and cell-specific manner. The identity of REST target genes and molecular details of how REST regulates them are emerging. We performed conditional null deletion of Rest (cKO), mainly restricted to murine hair cells (HCs) and auditory neurons (aka spiral ganglion neurons (SGNs)). Null-inactivation of full-length REST did not affect the development of normal HCs and SGNs but manifested as progressive hearing loss in adult mice. We found that the inactivation of REST resulted in an increased abundance of Kv7.4 channels at the transcript, protein, and functional levels. Specifically, we found that SGNs and HCs from Rest cKO mice displayed increased Kv7.4 expression and augmented Kv7 currents; SGN’s excitability was also significantly reduced. Administration of a compound with Kv7.4 channel activator activity, fasudil, recapitulated progressive hearing loss in mice. In contrast, inhibition of the Kv7 channels by XE991 rescued the auditory phenotype of Rest cKO mice. Previous studies identified some loss-of-function mutations within the Kv7.4-coding gene, Kcnq4, as a causative factor for progressive hearing loss in mice and humans. Thus, the findings reveal that a critical homeostatic Kv7.4 channel level is required for proper auditory functions.

Data availability

All data generated or analyzed are included in the source data

Article and author information

Author details

  1. Haiwei Zhang

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8209-9395
  2. Hongchen Li

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2639-8726
  3. Mingshun Lu

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shengnan Wang

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xueya Ma

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Fei Wang

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiaxi Liu

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xinyu Li

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Haichao Yang

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Fan Zhang

    Department of Pharmacology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Haitao Shen

    Laboratory of Pathology, Hebei Medical University, Hebei, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Noel J Buckley

    Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Nikita Gamper

    Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5806-0207
  14. Ebenezer N Yamoah

    Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
    For correspondence
    enyamoah@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9797-085X
  15. Ping Lv

    Department of Pharmacology, Hebei Medical University, Hebei, China
    For correspondence
    lping77@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Deafness and Other Communication Disorders (DC015135,DC016099)

  • Ebenezer N Yamoah

National Institute on Aging (AG060504-01,P01 AG051443)

  • Ebenezer N Yamoah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental animal protocols were performed following the Animal Care and Ethical Committee of Hebei Medical University (Shijiazhuang, China). 01644

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Publication history

  1. Received: January 4, 2022
  2. Preprint posted: March 4, 2022 (view preprint)
  3. Accepted: September 16, 2022
  4. Accepted Manuscript published: September 20, 2022 (version 1)

Copyright

© 2022, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 108
    Page views
  • 69
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haiwei Zhang
  2. Hongchen Li
  3. Mingshun Lu
  4. Shengnan Wang
  5. Xueya Ma
  6. Fei Wang
  7. Jiaxi Liu
  8. Xinyu Li
  9. Haichao Yang
  10. Fan Zhang
  11. Haitao Shen
  12. Noel J Buckley
  13. Nikita Gamper
  14. Ebenezer N Yamoah
  15. Ping Lv
(2022)
Repressor element 1-silencing transcription factor deficiency yields profound hearing loss through Kv7.4 channel upsurge in auditory neurons and hair cells
eLife 11:e76754.
https://doi.org/10.7554/eLife.76754

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Iago de Castro Silva, Anna Bianchi ... Jashodeep Datta
    Short Report Updated

    Background:

    Partial/complete pathologic response following neoadjuvant chemotherapy (NAC) in pancreatic cancer (PDAC) patients undergoing pancreatectomy is associated with improved survival. We sought to determine whether neutrophil-to-lymphocyte ratio (NLR) dynamics predict pathologic response following chemotherapy in PDAC, and if manipulating NLR impacts chemosensitivity in preclinical models and uncovers potential mechanistic underpinnings underlying these effects.

    Methods:

    Pathologic response in PDAC patients (n=94) undergoing NAC and pancreatectomy (7/2015-12/2019) was dichotomized as partial/complete or poor/absent. Bootstrap-validated multivariable models assessed associations between pre-chemotherapy NLR (%neutrophils÷%lymphocytes) or NLR dynamics during chemotherapy (ΔNLR = pre-surgery—pre-chemotherapy NLR) and pathologic response, disease-free survival (DFS), and overall survival (OS). To preclinically model effects of NLR attenuation on chemosensitivity, Ptf1aCre/+; KrasLSL-G12D/+;Tgfbr2flox/flox (PKT) mice and C57BL/6 mice orthotopically injected with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1Cre(KPC) cells were randomized to vehicle, gemcitabine/paclitaxel alone, and NLR-attenuating anti-Ly6G with/without gemcitabine/paclitaxel treatment.

    Results:

    In 94 PDAC patients undergoing NAC (median:4 months), pre-chemotherapy NLR (p<0.001) and ΔNLR attenuation during NAC (p=0.002) were independently associated with partial/complete pathologic response. An NLR score = pre-chemotherapy NLR+ΔNLR correlated with DFS (p=0.006) and OS (p=0.002). Upon preclinical modeling, combining NLR-attenuating anti-Ly6G treatment with gemcitabine/paclitaxel—compared with gemcitabine/paclitaxel or anti-Ly6G alone—not only significantly reduced tumor burden and metastatic outgrowth, but also augmented tumor-infiltrating CD107a+-degranulating CD8+ T-cells (p<0.01) while dampening inflammatory cancer-associated fibroblast (CAF) polarization (p=0.006) and chemoresistant IL-6/STAT-3 signaling in vivo. Neutrophil-derived IL-1β emerged as a novel mediator of stromal inflammation, inducing inflammatory CAF polarization and CAF-tumor cell IL-6/STAT-3 signaling in ex vivo co-cultures.

    Conclusions:

    Therapeutic strategies to mitigate neutrophil-CAF-tumor cell IL-1β/IL-6/STAT-3 signaling during NAC may improve pathologic responses and/or survival in PDAC.

    Funding:

    Supported by KL2 career development grant by Miami CTSI under NIH Award UL1TR002736, Stanley Glaser Foundation, American College of Surgeons Franklin Martin Career Development Award, and Association for Academic Surgery Joel J. Roslyn Faculty Award (to J. Datta); NIH R01 CA161976 (to N.B. Merchant); and NCI/NIH Award P30CA240139 (to J. Datta and N.B. Merchant).

    1. Immunology and Inflammation
    2. Medicine
    Parastoo Boroumand, David C Prescott ... Amira Klip
    Research Article Updated

    During obesity and high fat-diet (HFD) feeding in mice, sustained low-grade inflammation includes not only increased pro-inflammatory macrophages in the expanding adipose tissue, but also bone marrow (BM) production of invasive Ly6Chigh monocytes. As BM adiposity also accrues with HFD, we explored the relationship between the gains in BM white adipocytes and invasive Ly6Chigh monocytes by in vivo and ex vivo paradigms. We find a temporal and causal link between BM adipocyte whitening and the Ly6Chigh monocyte surge, preceding the adipose tissue macrophage rise during HFD in mice. Phenocopying this, ex vivo treatment of BM cells with conditioned media from BM adipocytes or bona fide white adipocytes favoured Ly6Chigh monocyte preponderance. Notably, Ly6Chigh skewing was preceded by monocyte metabolic reprogramming towards glycolysis, reduced oxidative potential and increased mitochondrial fission. In sum, short-term HFD changes BM cellularity, resulting in local adipocyte whitening driving a gradual increase and activation of invasive Ly6Chigh monocytes.