Measuring the tolerance of the genetic code to altered codon size

  1. Erika Alden DeBenedictis  Is a corresponding author
  2. Dieter Söll
  3. Kevin M Esvelt
  1. Massachusetts Institue of Technology, United States
  2. Yale University, United States
  3. Massachusetts Institute of Technology, United States

Abstract

Translation using four-base codons occurs in both natural and synthetic systems. What constraints contributed to the universal adoption of a triplet-codon, rather than quadruplet-codon, genetic code? Here, we investigate the tolerance of the Escherichia coli genetic code to tRNA mutations that increase codon size. We found that tRNAs from all twenty canonical isoacceptor classes can be converted to functional quadruplet tRNAs (qtRNAs). Many of these selectively incorporate a single amino acid in response to a specified four-base codon, as confirmed with mass spectrometry. However, efficient quadruplet codon translation often requires multiple tRNA mutations. Moreover, while tRNAs were largely amenable to quadruplet conversion, only nine of the twenty aminoacyl tRNA synthetases tolerate quadruplet anticodons. These may constitute a functional and mutually orthogonal set, but one that sharply limits the chemical alphabet available to a nascent all-quadruplet code. Our results suggest that the triplet codon code was selected because it is simpler and sufficient, not because a quadruplet codon code is unachievable. These data provide a blueprint for synthetic biologists to deliberately engineer an all-quadruplet expanded genetic code.

Data availability

All luminescence raw data are compiled in Figure 5A and provided as Source Data 1. Raw spectra have been deposited in the PRIDE database, dataset identifier PXD031925 and 10.6019/PXD031925.

The following data sets were generated

Article and author information

Author details

  1. Erika Alden DeBenedictis

    Department of Biological Engineering, Massachusetts Institue of Technology, Cambridge, United States
    For correspondence
    erika.alden@mit.edu
    Competing interests
    Erika Alden DeBenedictis, filed US Patent 16405380 on tRNA sequences engineered in this work...
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7933-2651
  2. Dieter Söll

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3077-8986
  3. Kevin M Esvelt

    Department of Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    Kevin M Esvelt, filed US Patent 16405380 on tRNA sequences engineered in this work...
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8797-3945

Funding

National Institute of General Medical Sciences (R35GM122560)

  • Dieter Söll

National Institute of General Medical Sciences (3R35GM122560-05W1)

  • Dieter Söll

National Institute of Allergy and Infectious Diseases (F31 AI145181-01)

  • Erika Alden DeBenedictis

National Institute of Diabetes and Digestive and Kidney Diseases (R00 DK102669-01)

  • Kevin M Esvelt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Version history

  1. Preprint posted: April 26, 2021 (view preprint)
  2. Received: January 10, 2022
  3. Accepted: March 15, 2022
  4. Accepted Manuscript published: March 16, 2022 (version 1)
  5. Version of Record published: May 11, 2022 (version 2)

Copyright

© 2022, DeBenedictis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,429
    Page views
  • 574
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erika Alden DeBenedictis
  2. Dieter Söll
  3. Kevin M Esvelt
(2022)
Measuring the tolerance of the genetic code to altered codon size
eLife 11:e76941.
https://doi.org/10.7554/eLife.76941

Share this article

https://doi.org/10.7554/eLife.76941

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.