Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry

  1. Edward R Kastenhuber
  2. Marisa Mercadante
  3. Benjamin Nilsson-Payant
  4. Jared L Johnson
  5. Javier A Jaimes
  6. Frauke Muecksch
  7. Yiska Weisblum
  8. Yaron Bram
  9. Gary R Whittaker
  10. Benjamin R tenOever
  11. Robert E Schwartz
  12. Vasuretha Chandar
  13. Lewis Cantley  Is a corresponding author
  1. Weill Cornell Medical College, United States
  2. TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Germany
  3. Cornell University, United States
  4. The Rockefeller University, United States
  5. Weill Cornell Medicine, United States
  6. New York University Langone Medical Center, United States

Abstract

Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases as well as coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.

Data availability

All new plasmids will be made available through Addgene.

Article and author information

Author details

  1. Edward R Kastenhuber

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1872-212X
  2. Marisa Mercadante

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  3. Benjamin Nilsson-Payant

    Institute of Experimental Virology, TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Hannover, Germany
    Competing interests
    No competing interests declared.
  4. Jared L Johnson

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  5. Javier A Jaimes

    Department of Microbiology and Immunology, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6706-092X
  6. Frauke Muecksch

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0132-5101
  7. Yiska Weisblum

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9249-1745
  8. Yaron Bram

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  9. Gary R Whittaker

    Department of Microbiology and Immunology, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  10. Benjamin R tenOever

    Department of Microbiology, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  11. Robert E Schwartz

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    Robert E Schwartz, is on the scientific advisory board for Miromatrix Inc and is a consultant and speaker for Alnylam Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-5995
  12. Vasuretha Chandar

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  13. Lewis Cantley

    Department of Medicine, Weill Cornell Medical College, New York, United States
    For correspondence
    lcantley@med.cornell.edu
    Competing interests
    Lewis Cantley, is a founder and member of the SAB of Agios Pharmaceuticals and a founder and former member of the SAB of Ravenna Pharmaceuticals (previously Petra Pharmaceuticals). These companies are developing novel therapies for cancer. Holds equity in Agios. Lewis Cantley's laboratory also received some financial support from Ravenna Pharmaceuticals..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1298-7653

Funding

National Institutes of Health (R01AI35270)

  • Gary R Whittaker

National Cancer Institute (R35CA197588)

  • Lewis Cantley

Pershing Square Foundation

  • Lewis Cantley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kastenhuber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,989
    views
  • 479
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward R Kastenhuber
  2. Marisa Mercadante
  3. Benjamin Nilsson-Payant
  4. Jared L Johnson
  5. Javier A Jaimes
  6. Frauke Muecksch
  7. Yiska Weisblum
  8. Yaron Bram
  9. Gary R Whittaker
  10. Benjamin R tenOever
  11. Robert E Schwartz
  12. Vasuretha Chandar
  13. Lewis Cantley
(2022)
Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry
eLife 11:e77444.
https://doi.org/10.7554/eLife.77444

Share this article

https://doi.org/10.7554/eLife.77444

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.