Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry

  1. Edward R Kastenhuber
  2. Marisa Mercadante
  3. Benjamin Nilsson-Payant
  4. Jared L Johnson
  5. Javier A Jaimes
  6. Frauke Muecksch
  7. Yiska Weisblum
  8. Yaron Bram
  9. Gary R Whittaker
  10. Benjamin R tenOever
  11. Robert E Schwartz
  12. Vasuretha Chandar
  13. Lewis Cantley  Is a corresponding author
  1. Weill Cornell Medical College, United States
  2. TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Germany
  3. Cornell University, United States
  4. The Rockefeller University, United States
  5. Weill Cornell Medicine, United States
  6. New York University Langone Medical Center, United States

Abstract

Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases as well as coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.

Data availability

All new plasmids will be made available through Addgene.

Article and author information

Author details

  1. Edward R Kastenhuber

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1872-212X
  2. Marisa Mercadante

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  3. Benjamin Nilsson-Payant

    Institute of Experimental Virology, TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Hannover, Germany
    Competing interests
    No competing interests declared.
  4. Jared L Johnson

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  5. Javier A Jaimes

    Department of Microbiology and Immunology, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6706-092X
  6. Frauke Muecksch

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0132-5101
  7. Yiska Weisblum

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9249-1745
  8. Yaron Bram

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  9. Gary R Whittaker

    Department of Microbiology and Immunology, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  10. Benjamin R tenOever

    Department of Microbiology, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  11. Robert E Schwartz

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    Robert E Schwartz, is on the scientific advisory board for Miromatrix Inc and is a consultant and speaker for Alnylam Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-5995
  12. Vasuretha Chandar

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  13. Lewis Cantley

    Department of Medicine, Weill Cornell Medical College, New York, United States
    For correspondence
    lcantley@med.cornell.edu
    Competing interests
    Lewis Cantley, is a founder and member of the SAB of Agios Pharmaceuticals and a founder and former member of the SAB of Ravenna Pharmaceuticals (previously Petra Pharmaceuticals). These companies are developing novel therapies for cancer. Holds equity in Agios. Lewis Cantley's laboratory also received some financial support from Ravenna Pharmaceuticals..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1298-7653

Funding

National Institutes of Health (R01AI35270)

  • Gary R Whittaker

National Cancer Institute (R35CA197588)

  • Lewis Cantley

Pershing Square Foundation

  • Lewis Cantley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kastenhuber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,995
    views
  • 479
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward R Kastenhuber
  2. Marisa Mercadante
  3. Benjamin Nilsson-Payant
  4. Jared L Johnson
  5. Javier A Jaimes
  6. Frauke Muecksch
  7. Yiska Weisblum
  8. Yaron Bram
  9. Gary R Whittaker
  10. Benjamin R tenOever
  11. Robert E Schwartz
  12. Vasuretha Chandar
  13. Lewis Cantley
(2022)
Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry
eLife 11:e77444.
https://doi.org/10.7554/eLife.77444

Share this article

https://doi.org/10.7554/eLife.77444

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.