Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry

  1. Edward R Kastenhuber
  2. Marisa Mercadante
  3. Benjamin Nilsson-Payant
  4. Jared L Johnson
  5. Javier A Jaimes
  6. Frauke Muecksch
  7. Yiska Weisblum
  8. Yaron Bram
  9. Gary R Whittaker
  10. Benjamin R tenOever
  11. Robert E Schwartz
  12. Vasuretha Chandar
  13. Lewis Cantley  Is a corresponding author
  1. Weill Cornell Medical College, United States
  2. TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Germany
  3. Cornell University, United States
  4. The Rockefeller University, United States
  5. Weill Cornell Medicine, United States
  6. New York University Langone Medical Center, United States

Abstract

Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases as well as coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.

Data availability

All new plasmids will be made available through Addgene.

Article and author information

Author details

  1. Edward R Kastenhuber

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1872-212X
  2. Marisa Mercadante

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  3. Benjamin Nilsson-Payant

    Institute of Experimental Virology, TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Hannover, Germany
    Competing interests
    No competing interests declared.
  4. Jared L Johnson

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  5. Javier A Jaimes

    Department of Microbiology and Immunology, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6706-092X
  6. Frauke Muecksch

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0132-5101
  7. Yiska Weisblum

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9249-1745
  8. Yaron Bram

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  9. Gary R Whittaker

    Department of Microbiology and Immunology, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  10. Benjamin R tenOever

    Department of Microbiology, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  11. Robert E Schwartz

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    Robert E Schwartz, is on the scientific advisory board for Miromatrix Inc and is a consultant and speaker for Alnylam Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-5995
  12. Vasuretha Chandar

    Department of Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  13. Lewis Cantley

    Department of Medicine, Weill Cornell Medical College, New York, United States
    For correspondence
    lcantley@med.cornell.edu
    Competing interests
    Lewis Cantley, is a founder and member of the SAB of Agios Pharmaceuticals and a founder and former member of the SAB of Ravenna Pharmaceuticals (previously Petra Pharmaceuticals). These companies are developing novel therapies for cancer. Holds equity in Agios. Lewis Cantley's laboratory also received some financial support from Ravenna Pharmaceuticals..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1298-7653

Funding

National Institutes of Health (R01AI35270)

  • Gary R Whittaker

National Cancer Institute (R35CA197588)

  • Lewis Cantley

Pershing Square Foundation

  • Lewis Cantley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kastenhuber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,879
    views
  • 462
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward R Kastenhuber
  2. Marisa Mercadante
  3. Benjamin Nilsson-Payant
  4. Jared L Johnson
  5. Javier A Jaimes
  6. Frauke Muecksch
  7. Yiska Weisblum
  8. Yaron Bram
  9. Gary R Whittaker
  10. Benjamin R tenOever
  11. Robert E Schwartz
  12. Vasuretha Chandar
  13. Lewis Cantley
(2022)
Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry
eLife 11:e77444.
https://doi.org/10.7554/eLife.77444

Share this article

https://doi.org/10.7554/eLife.77444

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.