On the flexibility of the cellular amination network in E. coli

  1. Helena Schulz-Mirbach
  2. Alexandra Müller
  3. Tong Wu
  4. Pascal Pfister
  5. Selçuk Aslan
  6. Lennart Schada von Borzyskowski
  7. Tobias J Erb
  8. Arren Bar-Even
  9. Steffen N Lindner  Is a corresponding author
  1. Max Planck Institute of Molecular Plant Physiology, Germany
  2. Max Planck Institute for Terrestrial Microbiology, Germany

Abstract

Ammonium (NH4+) is essential to generate the nitrogenous building blocks of life. It gets assimilated via the canonical biosynthetic routes to glutamate and is further distributed throughout metabolism via a network of transaminases. To study the flexibility of this network, we constructed an Escherichia coli glutamate auxotrophic strain. This strain allowed us to systematically study which amino acids serve as amine sources and found that several amino acids complement the auxotrophy, either by producing glutamate via transamination reactions or by their conversion to glutamate. In this network, we identified aspartate transaminase AspC as a major connector between many amino acids and glutamate. Additionally, we extended the transaminase network by the amino acids β-alanine, alanine, glycine, and serine as new amine sources and identified d-amino acid dehydrogenase (DadA) as an intracellular amino acid sink removing substrates from transaminase reactions. Finally, ammonium assimilation routes producing aspartate or leucine were introduced. Our study reveals the high flexibility of the cellular amination network, both in terms of transaminase promiscuity and adaptability to new connections and ammonium entry points.

Data availability

sequencing data has been deposited at Dryad

The following data sets were generated

Article and author information

Author details

  1. Helena Schulz-Mirbach

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5376-9185
  2. Alexandra Müller

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Tong Wu

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Pascal Pfister

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Selçuk Aslan

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Lennart Schada von Borzyskowski

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Tobias J Erb

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Arren Bar-Even

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1039-4328
  9. Steffen N Lindner

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    For correspondence
    Lindner@mpimp-golm.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3226-3043

Funding

Bundesministerium für Bildung und Forschung (031B0825B)

  • Steffen N Lindner

Deutsche Forschungsgemeinschaft (SFB987)

  • Tobias J Erb

Max Planck Institute of Molecular Plant Physiology (open access funding)

  • Helena Schulz-Mirbach
  • Alexandra Müller
  • Tong Wu
  • Selçuk Aslan
  • Arren Bar-Even
  • Steffen N Lindner

Max Planck Institute for Terrestrial Microbiology (open access funding)

  • Pascal Pfister

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Schulz-Mirbach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,150
    views
  • 541
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helena Schulz-Mirbach
  2. Alexandra Müller
  3. Tong Wu
  4. Pascal Pfister
  5. Selçuk Aslan
  6. Lennart Schada von Borzyskowski
  7. Tobias J Erb
  8. Arren Bar-Even
  9. Steffen N Lindner
(2022)
On the flexibility of the cellular amination network in E. coli
eLife 11:e77492.
https://doi.org/10.7554/eLife.77492

Share this article

https://doi.org/10.7554/eLife.77492

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ida Marie Boisen, Nadia Krarup Knudsen ... Martin Blomberg Jensen
    Research Article

    Testicular microcalcifications consist of hydroxyapatite and have been associated with an increased risk of testicular germ cell tumors (TGCTs) but are also found in benign cases such as loss-of-function variants in the phosphate transporter SLC34A2. Here, we show that fibroblast growth factor 23 (FGF23), a regulator of phosphate homeostasis, is expressed in testicular germ cell neoplasia in situ (GCNIS), embryonal carcinoma (EC), and human embryonic stem cells. FGF23 is not glycosylated in TGCTs and therefore cleaved into a C-terminal fragment which competitively antagonizes full-length FGF23. Here, Fgf23 knockout mice presented with marked calcifications in the epididymis, spermatogenic arrest, and focally germ cells expressing the osteoblast marker Osteocalcin (gene name: Bglap, protein name). Moreover, the frequent testicular microcalcifications in mice with no functional androgen receptor and lack of circulating gonadotropins are associated with lower Slc34a2 and higher Bglap/Slc34a1 (protein name: NPT2a) expression compared with wild-type mice. In accordance, human testicular specimens with microcalcifications also have lower SLC34A2 and a subpopulation of germ cells express phosphate transporter NPT2a, Osteocalcin, and RUNX2 highlighting aberrant local phosphate handling and expression of bone-specific proteins. Mineral disturbance in vitro using calcium or phosphate treatment induced deposition of calcium phosphate in a spermatogonial cell line and this effect was fully rescued by the mineralization inhibitor pyrophosphate. In conclusion, testicular microcalcifications arise secondary to local alterations in mineral homeostasis, which in combination with impaired Sertoli cell function and reduced levels of mineralization inhibitors due to high alkaline phosphatase activity in GCNIS and TGCTs facilitate osteogenic-like differentiation of testicular cells and deposition of hydroxyapatite.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.