On the flexibility of the cellular amination network in E. coli

  1. Helena Schulz-Mirbach
  2. Alexandra Müller
  3. Tong Wu
  4. Pascal Pfister
  5. Selçuk Aslan
  6. Lennart Schada von Borzyskowski
  7. Tobias J Erb
  8. Arren Bar-Even
  9. Steffen N Lindner  Is a corresponding author
  1. Max Planck Institute of Molecular Plant Physiology, Germany
  2. Max Planck Institute for Terrestrial Microbiology, Germany

Abstract

Ammonium (NH4+) is essential to generate the nitrogenous building blocks of life. It gets assimilated via the canonical biosynthetic routes to glutamate and is further distributed throughout metabolism via a network of transaminases. To study the flexibility of this network, we constructed an Escherichia coli glutamate auxotrophic strain. This strain allowed us to systematically study which amino acids serve as amine sources and found that several amino acids complement the auxotrophy, either by producing glutamate via transamination reactions or by their conversion to glutamate. In this network, we identified aspartate transaminase AspC as a major connector between many amino acids and glutamate. Additionally, we extended the transaminase network by the amino acids β-alanine, alanine, glycine, and serine as new amine sources and identified d-amino acid dehydrogenase (DadA) as an intracellular amino acid sink removing substrates from transaminase reactions. Finally, ammonium assimilation routes producing aspartate or leucine were introduced. Our study reveals the high flexibility of the cellular amination network, both in terms of transaminase promiscuity and adaptability to new connections and ammonium entry points.

Data availability

sequencing data has been deposited at Dryad

The following data sets were generated

Article and author information

Author details

  1. Helena Schulz-Mirbach

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5376-9185
  2. Alexandra Müller

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Tong Wu

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Pascal Pfister

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Selçuk Aslan

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Lennart Schada von Borzyskowski

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Tobias J Erb

    Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Arren Bar-Even

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1039-4328
  9. Steffen N Lindner

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    For correspondence
    Lindner@mpimp-golm.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3226-3043

Funding

Bundesministerium für Bildung und Forschung (031B0825B)

  • Steffen N Lindner

Deutsche Forschungsgemeinschaft (SFB987)

  • Tobias J Erb

Max Planck Institute of Molecular Plant Physiology (open access funding)

  • Helena Schulz-Mirbach
  • Alexandra Müller
  • Tong Wu
  • Selçuk Aslan
  • Arren Bar-Even
  • Steffen N Lindner

Max Planck Institute for Terrestrial Microbiology (open access funding)

  • Pascal Pfister

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Schulz-Mirbach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,028
    views
  • 522
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helena Schulz-Mirbach
  2. Alexandra Müller
  3. Tong Wu
  4. Pascal Pfister
  5. Selçuk Aslan
  6. Lennart Schada von Borzyskowski
  7. Tobias J Erb
  8. Arren Bar-Even
  9. Steffen N Lindner
(2022)
On the flexibility of the cellular amination network in E. coli
eLife 11:e77492.
https://doi.org/10.7554/eLife.77492

Share this article

https://doi.org/10.7554/eLife.77492

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.