Interrogating the precancerous evolution of pathway dysfunction in lung squamous cell carcinoma using XTABLE

  1. Matthew Roberts
  2. Julia Ogden
  3. A S Md Mukarram Hossain
  4. Anshuman Chaturvedi
  5. Alastair RW Kerr
  6. Caroline Dive
  7. Jennifer Ellen Beane
  8. Carlos Lopez-Garcia  Is a corresponding author
  1. University of Manchester, United Kingdom
  2. Cancer Research UK Manchester Institute, United Kingdom
  3. The Christie Hospital, United Kingdom
  4. Boston University, United States

Abstract

Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis that lacks adequate therapies and actionable targets. This disease is characterized by a sequence of low and high-grade preinvasive stages with increasing probability of malignant progression. Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to design new methods of early detection and prevention, and to identify the molecular processes that are key for malignant progression. To facilitate this research, we have designed XTABLE, an open-source application that integrates the most extensive transcriptomic databases of PMLs published so far. With this tool, users can stratify samples using multiple parameters and interrogate PML biology in multiple manners, such as two and multiple group comparisons, interrogation of genes of interests and transcriptional signatures. Using XTABLE, we have carried out a comparative study of the potential role of chromosomal instability scores as biomarkers of PML progression and mapped the onset of the most relevant LUSC pathways to the sequence of LUSC developmental stages. XTABLE will critically facilitate new research for the identification of early detection biomarkers and acquire a better understanding of the LUSC precancerous stages.

Data availability

The current manuscript makes use of previously published databases, so no data have been generated for this manuscript. All analyses shown in the manuscript has been carried out using XTABLE and can be reproduced easily by any user.

The following previously published data sets were used

Article and author information

Author details

  1. Matthew Roberts

    Cancer Biomarker Centre, University of Manchester, Alderley Edge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Julia Ogden

    Cancer Research UK Manchester Institute, Alderley Edge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. A S Md Mukarram Hossain

    Cancer Biomarker Centre, University of Manchester, Alderley Edge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Anshuman Chaturvedi

    Department of Histopathology, The Christie Hospital, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Alastair RW Kerr

    Cancer Biomarker Centre, University of Manchester, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9207-6050
  6. Caroline Dive

    Cancer Biomarker Centre, University of Manchester, Alderley Edge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jennifer Ellen Beane

    School of Medicine, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Carlos Lopez-Garcia

    Cancer Research UK Manchester Institute, Alderley Edge, United Kingdom
    For correspondence
    carlos.lopezgarcia@cruk.manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9848-8216

Funding

Cancer Research UK (A25146)

  • Julia Ogden
  • A S Md Mukarram Hossain
  • Anshuman Chaturvedi
  • Alastair RW Kerr
  • Caroline Dive
  • Carlos Lopez-Garcia

Manchester Biomedical Research Centre

  • Matthew Roberts

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Roberts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,080
    views
  • 146
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Roberts
  2. Julia Ogden
  3. A S Md Mukarram Hossain
  4. Anshuman Chaturvedi
  5. Alastair RW Kerr
  6. Caroline Dive
  7. Jennifer Ellen Beane
  8. Carlos Lopez-Garcia
(2023)
Interrogating the precancerous evolution of pathway dysfunction in lung squamous cell carcinoma using XTABLE
eLife 12:e77507.
https://doi.org/10.7554/eLife.77507

Share this article

https://doi.org/10.7554/eLife.77507

Further reading

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.