Native American genetic ancestry and pigmentation allele contributions to skin color in a caribbean population

Abstract

Our interest in the genetic basis of skin color variation between populations led us to seek a Native American population with genetically African admixture but low frequency of European light skin alleles. Analysis of 458 genomes from individuals residing in the Kalinago territory of the Commonwealth of Dominica showed approximately 55% Native American, 32% African, and 12% European genetic ancestry, the highest Native American genetic ancestry among Caribbean populations to date. Skin pigmentation ranged from 20 to 80 melanin units, averaging 46. Three albino individuals were determined to be homozygous for a causative multi-nucleotide polymorphism OCA2NW273KV contained within a haplotype of African origin; its allele frequency was 0.03 and single allele effect size was -8 melanin units. Derived allele frequencies of SLC24A5A111T and SLC45A2L374F were 0.14 and 0.06, with single allele effect sizes of -6 and -4, respectively. Native American genetic ancestry by itself reduced pigmentation by more than 20 melanin units (range 24 - 29). The responsible hypopigmenting genetic variants remain to be identified, since none of the published polymorphisms predicted in prior literature to affect skin color in Native Americans caused detectable hypopigmentation in the Kalinago.

Data availability

The whole exome sequencing and whole genome SNP genotyping data underlying this article cannot be shared publicly due to the privacy of individuals and stipulation by the Kalinago community. Only de-identified filtered SNP data used in analyses will be shared. Additional data will be shared on request to the corresponding author, pending approval from the Kalinago Council.M-index and specific genotyping data (SLC24A5 A111T, SLC45A2 L374F, OCA2 NW273KV and OCA2 305W) and genotyping data for Admixture have been uploaded to Dryad https://doi.org/10.5061/dryad.sf7m0cg7zThe data cannot be used for any commercial purposes.We did not create any new software or script for analysis.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Khai C Ang

    Department of Pathology, Pennsylvania State University, Hershey, United States
    For correspondence
    kca2@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7695-9953
  2. Victor A Canfield

    Department of Pathology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tiffany C Foster

    Department of Pathology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thaddeus D Harbaugh

    Department of Pathology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kathryn A Early

    Department of Pathology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel L Harter

    Department of Pathology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Katherine P Reid

    Department of Pathology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Shou Ling Leong

    Department of Family and Community Medicine, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuka Kawasawa

    Department of Pharmacology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8638-6738
  10. Dajiang Liu

    Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. John W Hawley

    Salybia Mission Project, Portsmouth, Dominica
    Competing interests
    The authors declare that no competing interests exist.
  12. Keith C Cheng

    Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, Hershey, United States
    For correspondence
    kcheng76@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5350-5825

Funding

Hershey Rotary Club

  • Khai C Ang

Jake Gittlen Laboratories for Cancer Research

  • Keith C Cheng

Penn State College of Medicine Department of Pathology

  • Keith C Cheng

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was reviewed and approved by the Kalinago council and institutional review boards of Penn State University (29269EP), Ross University, and the Dominica Ministry of Health (H125). Informed consent was obtained from each participant enrolled in the study, and in the case of minors, consent was also obtained from a parent or guardian.

Copyright

© 2023, Ang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,422
    views
  • 216
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Khai C Ang
  2. Victor A Canfield
  3. Tiffany C Foster
  4. Thaddeus D Harbaugh
  5. Kathryn A Early
  6. Rachel L Harter
  7. Katherine P Reid
  8. Shou Ling Leong
  9. Yuka Kawasawa
  10. Dajiang Liu
  11. John W Hawley
  12. Keith C Cheng
(2023)
Native American genetic ancestry and pigmentation allele contributions to skin color in a caribbean population
eLife 12:e77514.
https://doi.org/10.7554/eLife.77514

Share this article

https://doi.org/10.7554/eLife.77514

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.

    1. Evolutionary Biology
    Yiheng Zhang, Xing Wang ... Xiaoguang Yang
    Research Article

    Although fossil evidence suggests the existence of an early muscular system in the ancient cnidarian jellyfish from the early Cambrian Kuanchuanpu biota (ca. 535 Ma), south China, the mechanisms underlying the feeding and respiration of the early jellyfish are conjectural. Recently, the polyp inside the periderm of olivooids was demonstrated to be a calyx-like structure, most likely bearing short tentacles and bundles of coronal muscles at the edge of the calyx, thus presumably contributing to feeding and respiration. Here, we simulate the contraction and expansion of the microscopic periderm-bearing olivooid Quadrapyrgites via the fluid-structure interaction computational fluid dynamics (CFD) method to investigate their feeding and respiratory activities. The simulations show that the rate of water inhalation by the polyp subumbrella is positively correlated with the rate of contraction and expansion of the coronal muscles, consistent with the previous feeding and respiration hypothesis. The dynamic simulations also show that the frequent inhalation/exhalation of water through the periderm polyp expansion/contraction conducted by the muscular system of Quadrapyrgites most likely represents the ancestral feeding and respiration patterns of Cambrian sedentary medusozoans that predated the rhythmic jet-propelled swimming of the modern jellyfish. Most importantly for these Cambrian microscopic sedentary medusozoans, the increase of body size and stronger capacity of muscle contraction may have been indispensable in the stepwise evolution of active feeding and subsequent swimming in a higher flow (or higher Reynolds number) environment.