Abstract

Spermidine and other polyamines alleviate oxidative stress, yet excess spermidine seems toxic to Escherichia coli unless it is neutralized by SpeG, an enzyme for the spermidine N-acetyl transferase function. Thus, wild-type E. coli can tolerate applied exogenous spermidine stress, but DspeG strain of E. coli fails to do that. Here, using different ROS probes and performing electron paramagnetic resonance spectroscopy, we provide evidence that although spermidine mitigates oxidative stress by lowering overall ROS levels, excess of it simultaneously triggers the production of superoxide radicals, thereby causing toxicity in the DspeG strain. Furthermore, performing microarray experiment and other biochemical assays, we show that the spermidine-induced superoxide anions affected redox balance and iron homeostasis. Finally, we demonstrate that while RNA-bound spermidine inhibits iron oxidation, free spermidine interacts and oxidizes the iron to evoke superoxide radicals directly. Therefore, we propose that the spermidine-induced superoxide generation is one of the major causes of spermidine toxicity in E. coli.

Data availability

Microarray data is available in the GEO server. GEO accession Number GSE154618 has been provided in the material and method section.Source files for the following Figures were provided as a zip folder:Figure 1A, 1B, 1C, 1FFigure 2Figure 3A, 3B, 3C, 3D, 3E, 3F, 3GFigure 4B (ii), 4C, 4D, 4EFigure 5A, 5B, 5DFigure 6D, 6E, 6GFigure 1-figure supplement 1C

The following data sets were generated

Article and author information

Author details

  1. Vineet Kumar

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Rajesh Kumar Mishra

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Debarghya Ghose

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Arunima Kalita

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Pulkit Dhiman

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Anand Prakash

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Nirja Thakur

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Gopa Mitra

    Division of Molecular Medicine, St John's Medical College Hospital, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  9. Vinod D Chaudhari

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  10. Amit Arora

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3503-4695
  11. Dipak Dutta

    CSIR Institute of Microbial Technology, Chandigarh, India
    For correspondence
    dutta@imtech.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0458-4109

Funding

Council of Scientific and Industrial Research, India (MLP042)

  • Dipak Dutta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,447
    views
  • 310
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vineet Kumar
  2. Rajesh Kumar Mishra
  3. Debarghya Ghose
  4. Arunima Kalita
  5. Pulkit Dhiman
  6. Anand Prakash
  7. Nirja Thakur
  8. Gopa Mitra
  9. Vinod D Chaudhari
  10. Amit Arora
  11. Dipak Dutta
(2022)
Free spermidine evokes superoxide radicals that manifest toxicity
eLife 11:e77704.
https://doi.org/10.7554/eLife.77704

Share this article

https://doi.org/10.7554/eLife.77704

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Lina Antenucci, Salla Virtanen ... Perttu Permi
    Research Article

    Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.