Abstract

Spermidine and other polyamines alleviate oxidative stress, yet excess spermidine seems toxic to Escherichia coli unless it is neutralized by SpeG, an enzyme for the spermidine N-acetyl transferase function. Thus, wild-type E. coli can tolerate applied exogenous spermidine stress, but DspeG strain of E. coli fails to do that. Here, using different ROS probes and performing electron paramagnetic resonance spectroscopy, we provide evidence that although spermidine mitigates oxidative stress by lowering overall ROS levels, excess of it simultaneously triggers the production of superoxide radicals, thereby causing toxicity in the DspeG strain. Furthermore, performing microarray experiment and other biochemical assays, we show that the spermidine-induced superoxide anions affected redox balance and iron homeostasis. Finally, we demonstrate that while RNA-bound spermidine inhibits iron oxidation, free spermidine interacts and oxidizes the iron to evoke superoxide radicals directly. Therefore, we propose that the spermidine-induced superoxide generation is one of the major causes of spermidine toxicity in E. coli.

Data availability

Microarray data is available in the GEO server. GEO accession Number GSE154618 has been provided in the material and method section.Source files for the following Figures were provided as a zip folder:Figure 1A, 1B, 1C, 1FFigure 2Figure 3A, 3B, 3C, 3D, 3E, 3F, 3GFigure 4B (ii), 4C, 4D, 4EFigure 5A, 5B, 5DFigure 6D, 6E, 6GFigure 1-figure supplement 1C

The following data sets were generated

Article and author information

Author details

  1. Vineet Kumar

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Rajesh Kumar Mishra

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Debarghya Ghose

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Arunima Kalita

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Pulkit Dhiman

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Anand Prakash

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Nirja Thakur

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Gopa Mitra

    Division of Molecular Medicine, St John's Medical College Hospital, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  9. Vinod D Chaudhari

    CSIR Institute of Microbial Technology, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  10. Amit Arora

    CSIR Institute of Microbial Technology, Chandigarh, India
    For correspondence
    aarora.pgi@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3503-4695
  11. Dipak Dutta

    CSIR Institute of Microbial Technology, Chandigarh, India
    For correspondence
    dutta@imtech.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0458-4109

Funding

Council of Scientific and Industrial Research, India (MLP042)

  • Dipak Dutta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,391
    views
  • 302
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vineet Kumar
  2. Rajesh Kumar Mishra
  3. Debarghya Ghose
  4. Arunima Kalita
  5. Pulkit Dhiman
  6. Anand Prakash
  7. Nirja Thakur
  8. Gopa Mitra
  9. Vinod D Chaudhari
  10. Amit Arora
  11. Dipak Dutta
(2022)
Free spermidine evokes superoxide radicals that manifest toxicity
eLife 11:e77704.
https://doi.org/10.7554/eLife.77704

Share this article

https://doi.org/10.7554/eLife.77704

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.