Stage-dependent differential influence of metabolic and structural networks on memory across Alzheimer's disease continuum

  1. Kok Pin Ng
  2. Xing Qian
  3. Kwun Kei Ng
  4. Fang Ji
  5. Pedro Rosa-Neto
  6. Serge Gauthier
  7. Nagaendran Kandiah
  8. Juan Helen Zhou  Is a corresponding author
  9. for the Alzheimer's Disease Neuroimaging Initiative
  1. National Neuroscience Institute, Singapore
  2. National University of Singapore, Singapore
  3. McGill University, Canada

Abstract

Background: Large-scale neuronal network breakdown underlies memory impairment in Alzheimer's disease (AD). However, the differential trajectories of the relationships between network organization and memory across pathology and cognitive stages in AD remain elusive. We determined whether and how the influences of individual-level structural and metabolic covariance network integrity on memory varied with amyloid pathology across clinical stages without assuming a constant relationship.

Methods: 708 participants from the Alzheimer's Disease Neuroimaging Initiative were studied. Individual-level structural and metabolic covariance scores in higher-level cognitive and hippocampal networks were derived from magnetic resonance imaging and [18F]fluorodeoxyglucose positron emission tomography using seed-based partial least square analyses. The non-linear associations between network scores and memory across cognitive stages in each pathology group were examined using sparse varying coefficient modelling.

Results: We showed that the associations of memory with structural and metabolic networks in the hippocampal and default mode regions exhibited pathology-dependent differential trajectories across cognitive stages using sparse varying coefficient modelling. In amyloid pathology group, there was an early influence of hippocampal structural network deterioration on memory impairment in the preclinical stage, and a biphasic influence of the angular gyrus-seeded default mode metabolic network on memory in both preclinical and dementia stages. In non- amyloid pathology groups, in contrast, the trajectory of the hippocampus-memory association was opposite and weaker overall, while no metabolism covariance networks were related to memory. Key findings were replicated in a larger cohort of 1280 participants.

Conclusions: Our findings highlight potential windows of early intervention targeting network breakdown at the preclinical AD stage.

Funding: Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). We also acknowledge the funding support from the Duke-NUS/Khoo Bridge Funding Award (KBrFA/2019-0020) and NMRC Open Fund Large Collaborative Grant (OFLCG09May0035).

Data availability

ADNI data used in this manuscript are publicly available at adni.loni.usc.edu, subject to adherence to the ADNI Data Use Agreement and publications' policies (https://ida.loni.usc.edu/collaboration/access/appLicense.jsp). Guidelines to apply for data access can be found in https://adni.loni.usc.edu/data-samples/access-data/#access_data. Codes used in this manuscript are available at https://github.com/hzlab/2021Qian_ADNI_FDG . The repository is currently private, but will be made public after manuscript acceptance for publication.

The following previously published data sets were used

Article and author information

Author details

  1. Kok Pin Ng

    Department of Neurology, National Neuroscience Institute, Singapore, Singapore
    Competing interests
    No competing interests declared.
  2. Xing Qian

    Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  3. Kwun Kei Ng

    Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0584-7679
  4. Fang Ji

    Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  5. Pedro Rosa-Neto

    Translational Neuroimaging Laboratory, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9116-1376
  6. Serge Gauthier

    Department of Psychiatry, McGill University, Montreal, Canada
    Competing interests
    Serge Gauthier, received consulting fees from CERVEAU Therapeutics, Biogen Canada, Roche Canada, TauRx, honoraria from Biogen Canada, and payment for participation on the DIAN-TU Washington University drug selection committee..
  7. Nagaendran Kandiah

    Department of Neurology, National Neuroscience Institute, Singapore, Singapore
    Competing interests
    Nagaendran Kandiah, received grants from Novartis Pharmaceuticals and Schwabe Pharmaceuticals, honoraria and support (for travel and/or meetings) from Eisai Pharmaceuticals, Novartis, Schwabe and Lundbeck, and participated on the Asian Society Against Dementia committee and Vascog Asia..
  8. Juan Helen Zhou

    Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    For correspondence
    helen.zhou@nus.edu.sg
    Competing interests
    Juan Helen Zhou, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0180-8648

Funding

Alzheimer's Disease Neuroimaging Initiative (National Institutes of Health Grant U01 AG024904)

  • Kok Pin Ng
  • Xing Qian
  • Kwun Kei Ng
  • Fang Ji
  • Pedro Rosa-Neto
  • Serge Gauthier
  • Nagaendran Kandiah
  • Juan Helen Zhou

Duke-NUS Medical School (Duke-NUS/Khoo Bridge Funding Award (KBrFA/2019-0020))

  • Juan Helen Zhou

National Medical Research Council (NMRC Open Fund Large Collaborative Grant (OFLCG09May0035))

  • Juan Helen Zhou

DoD Alzheimer's Disease Neuroimaging Initiative (Department of Defense award number W81XWH-12-2-0012)

  • Kok Pin Ng
  • Xing Qian
  • Kwun Kei Ng
  • Fang Ji
  • Pedro Rosa-Neto
  • Serge Gauthier
  • Nagaendran Kandiah
  • Juan Helen Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD).The ADNI study was approved by the Institutional Review Boards of all of the participating institutions and informed written consent was obtained from all participants at eachsite.

Copyright

© 2022, Ng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,085
    views
  • 260
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kok Pin Ng
  2. Xing Qian
  3. Kwun Kei Ng
  4. Fang Ji
  5. Pedro Rosa-Neto
  6. Serge Gauthier
  7. Nagaendran Kandiah
  8. Juan Helen Zhou
  9. for the Alzheimer's Disease Neuroimaging Initiative
(2022)
Stage-dependent differential influence of metabolic and structural networks on memory across Alzheimer's disease continuum
eLife 11:e77745.
https://doi.org/10.7554/eLife.77745

Share this article

https://doi.org/10.7554/eLife.77745

Further reading

    1. Medicine
    Sami Fawaz, Severine Marti ... Thierry Couffinhal
    Research Article

    Background:

    Clonal hematopoiesis of indeterminate potential (CHIP) was initially linked to a twofold increase in atherothrombotic events. However, recent investigations have revealed a more nuanced picture, suggesting that CHIP may confer only a modest rise in myocardial infarction (MI) risk. This observed lower risk might be influenced by yet unidentified factors that modulate the pathological effects of CHIP. Mosaic loss of the Y chromosome (mLOY), a common marker of clonal hematopoiesis in men, has emerged as a potential candidate for modulating cardiovascular risk associated with CHIP. In this study, we aimed to ascertain the risk linked to each somatic mutation or mLOY and explore whether mLOY could exert an influence on the cardiovascular risk associated with CHIP.

    Methods:

    We conducted an examination for the presence of CHIP and mLOY using targeted high-throughput sequencing and digital PCR in a cohort of 446 individuals. Among them, 149 patients from the CHAth study had experienced a first MI at the time of inclusion (MI(+) subjects), while 297 individuals from the Three-City cohort had no history of cardiovascular events (CVE) at the time of inclusion (MI(-) subjects). All subjects underwent thorough cardiovascular phenotyping, including a direct assessment of atherosclerotic burden. Our investigation aimed to determine whether mLOY could modulate inflammation, atherosclerosis burden, and atherothrombotic risk associated with CHIP.

    Results:

    CHIP and mLOY were detected with a substantial prevalence (45.1% and 37.7%, respectively), and their occurrence was similar between MI(+) and MI(-) subjects. Notably, nearly 40% of CHIP(+) male subjects also exhibited mLOY. Interestingly, neither CHIP nor mLOY independently resulted in significant increases in plasma hs-CRP levels, atherosclerotic burden, or MI incidence. Moreover, mLOY did not amplify or diminish inflammation, atherosclerosis, or MI incidence among CHIP(+) male subjects. Conversely, in MI(-) male subjects, CHIP heightened the risk of MI over a 5 y period, particularly in those lacking mLOY.

    Conclusions:

    Our study highlights the high prevalence of CHIP and mLOY in elderly individuals. Importantly, our results demonstrate that neither CHIP nor mLOY in isolation substantially contributes to inflammation, atherosclerosis, or MI incidence. Furthermore, we find that mLOY does not exert a significant influence on the modulation of inflammation, atherosclerosis burden, or atherothrombotic risk associated with CHIP. However, CHIP may accelerate the occurrence of MI, especially when unaccompanied by mLOY. These findings underscore the complexity of the interplay between CHIP, mLOY, and cardiovascular risk, suggesting that large-scale studies with thousands more patients may be necessary to elucidate subtle correlations.

    Funding:

    This study was supported by the Fondation Cœur & Recherche (the Société Française de Cardiologie), the Fédération Française de Cardiologie, ERA-CVD (« CHEMICAL » consortium, JTC 2019) and the Fondation Université de Bordeaux. The laboratory of Hematology of the University Hospital of Bordeaux benefitted of a convention with the Nouvelle Aquitaine Region (2018-1R30113-8473520) for the acquisition of the Nextseq 550Dx sequencer used in this study.

    Clinical trial number:

    NCT04581057.

    1. Biochemistry and Chemical Biology
    2. Medicine
    Soo-Yeon Hwang, Kyung-Hwa Jeon ... Youngjoo Kwon
    Research Article

    HER2 overexpression significantly contributes to the aggressive nature and recurrent patterns observed in various solid tumors, notably gastric cancers. Trastuzumab, HER2-targeting monoclonal antibody drug, has shown considerable clinical success; however, readily emerging drug resistance emphasizes the pressing need for improved interventions in HER2-overexpressing cancers. To address this, we proposed targeting the protein-protein interaction (PPI) between ELF3 and MED23 as an alternative therapeutic approach to trastuzumab. In this study, we synthesized a total of 26 compounds consisting of 10 chalcones, 7 pyrazoline acetyl, and 9 pyrazoline propionyl derivatives, and evaluated their biological activity as potential ELF3-MED23 PPI inhibitors. Upon systematic analysis, candidate compound 10 was selected due to its potency in downregulating reporter gene activity of ERBB2 promoter confirmed by SEAP activity and its effect on HER2 protein and mRNA levels. Compound 10 effectively disrupted the binding interface between the ELF3 TAD domain and the 391–582 amino acid region of MED23, resulting in successful inhibition of the ELF3-MED23 PPI. This intervention led to a substantial reduction in HER2 levels and its downstream signals in the HER2-positive gastric cancer cell line. Subsequently, compound 10 induced significant apoptosis and anti-proliferative effects, demonstrating superior in vitro and in vivo anticancer activity overall. We found that the anticancer activity of compound 10 was not only restricted to trastuzumab-sensitive cases, but was also valid for trastuzumab-refractory clones. This suggests its potential as a viable therapeutic option for trastuzumab-resistant gastric cancers. In summary, compound 10 could be a novel alternative therapeutic strategy for HER2-overexpressing cancers, overcoming the limitations of trastuzumab.