Placental Malaria: Tackling variants with antibodies
Malaria is a serious, potentially life-threatening disease spread by mosquitoes. Pregnant women are especially at risk, as high densities of the parasite that causes malaria can accumulate in the placenta. This can trigger damaging inflammation in the placenta, which could affect the growth and development of the unborn baby, and even lead to a higher risk of infant death (Walker et al., 2014).
The malaria parasites that infect pregnant women are unique in displaying a protein called VAR2CSA on their surface. When VAR2CSA binds to CSA, a molecule on the surface of placenta cells, it leads to placental malaria. Over successive pregnancies, the body develops immunity against placental malaria by generating antibodies targeting VAR2CSA, and preventing it from attaching to CSA (Salanti et al., 2004). This suggests that VAR2CSA vaccines, which mimic the body’s natural defence mechanisms, may be able to provide some protection against placental malaria.
However, the sequences of the gene that codes for VAR2CSA vary between the different parasite strains (Benavente et al., 2018). Two trial vaccines have so far been developed based on sub-parts of the protein, using different variants of VAR2CSA that included an important CSA-binding domain. And although each vaccine candidate worked well against the variant of the protein used, there was little evidence of protection against other variants (Mordmüller et al., 2019; Sirima et al., 2020). Now, in eLife, Patrick Duffy and colleagues at the US National Institute of Allergy and Infectious Diseases – including Justin Doritchamou as first author – investigated whether an antibody could recognise different versions of the full-length VAR2CSA protein from different parasites (Doritchamou et al., 2022).
Doritchamou et al. first mixed five variants of the VAR2CSA protein (one at a time) with a pooled plasma sample from women who were immune to placental malaria. Each time they mixed a single VAR2CSA variant with the plasma, antibodies that bound to that variant were purified out of the pool and quantified. This revealed that most antibodies had bound to the first two variants, suggesting that antibodies towards the latter variants had already been depleted from the pool because they also recognised the earlier variants.
To confirm that antibodies were cross-protective, the researchers then took the antibodies they had purified using one particular VAR2CSA variant and tested their ability to recognise other variants. This revealed that the antibodies that attached to the first VAR2CSA variant were able to recognise all other tested variants. Cross-recognition was seen using purified proteins or using infected red blood cells expressing the variant.
The fact that naturally acquired antibodies against one version of full-length VAR2CSA also react with other variants implies that exposure to a small number of VAR2CSA variants might be enough to provide protection (Figure 1). This finding differs from the group’s previous results using just domains of VAR2CSA, where antibodies for a specific domain from one variant did not bind to other variants (Doritchamou et al., 2016). This suggests that the important antibody target on the protein may only form when the whole protein folds together. However, VAR2CSA is a large molecule and synthesising the amount of complete protein needed for a vaccine would be challenging, especially if multiple variants are required.

Antibody defence in placental malaria.
Placental malaria is caused by an accumulation of parasite-infected red blood cells (red, circled structures) in the placenta. These infected blood cells have a protein (VAR2CSA) that can attach to the CSA protein (green wavy lines) located on the epithelial layer of the placenta (dark pink) (A). Over successive pregnancies, the body develops antibodies (Y-shaped proteins) against VAR2CSA that can prevent the infected red blood cells from binding. However, the genetic code of VAR2CSA proteins can vary (illustrated as differently coloured parasites in the red blood cells), and effective antibodies would need to recognize multiple variants. Doritchamou et al. mixed placental plasma from immune mothers with individual VAR2CSA variants and quantified the number of antibodies bound to each one (blue). They then showed that antibodies bound to one full-length VAR2CSA variant were also able to recognize other VAR2CSA variants (C) and block their binding to CSA. These antibodies were cross protective (B), suggesting that exposure to just a small number of VAR2CSA proteins may be enough to provide protection from placental malaria.
Additionally, naturally occurring antibodies, which lack an attached sugar called fucose, may be more protective than antibodies induced by a placental malaria vaccine, which have this sugar (Larsen et al., 2021). The reasons for this difference are unclear. Perhaps vaccine formulations that better mimic natural antigen presentation, such as providing the full-length protein, would lead to highly active antibodies without fucose, which would be highly desirable.
There is also the question of when is the best time to administer a vaccine. Ideally, immunisation would start in young, adolescent girls, a strategy commonly used for HPV vaccines to prevent cervical cancer. Such a vaccine roll-out would require detailed and ongoing consultation in communities where the vaccine might be used, but saving the lives of young mothers and their babies should be worth every effort.
References
-
VAR2CSA domain-specific analysis of naturally acquired functional antibodies to Plasmodium falciparum placental malariaThe Journal of Infectious Diseases 214:577–586.https://doi.org/10.1093/infdis/jiw197
-
Evidence for the involvement of VAR2CSA in pregnancy-associated malariaThe Journal of Experimental Medicine 200:1197–1203.https://doi.org/10.1084/jem.20041579
Article and author information
Author details
Publication history
- Version of Record published: March 28, 2022 (version 1)
Copyright
© 2022, Aitken and Rogerson
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 606
- Page views
-
- 71
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
- Microbiology and Infectious Disease
Bacterial pneumonia in neonates can cause significant morbidity and mortality when compared to other childhood age groups. To understand the immune mechanisms that underlie these age-related differences, we employed a mouse model of E. coli pneumonia to determine the dynamic cellular and molecular differences in immune responsiveness between neonates (PND 3-5) and juveniles (PND 12-18), at 24, 48, and 72 hours. Cytokine gene expression from whole lung extracts was also quantified at these time points, using qRT-PCR. E. coli challenge resulted in rapid and significant increases in neutrophils, monocytes, and γδT cells, along with significant decreases in dendritic cells and alveolar macrophages in the lungs of both neonates and juveniles. E. coli challenged juvenile lung had significant increases in interstitial macrophages and recruited monocytes that were not observed in neonatal lungs. Expression of IFNg-responsive genes was positively correlated with the levels and dynamics of MHCII-expressing innate cells in neonatal and juvenile lungs. Several facets of immune responsiveness in the wild-type neonates were recapitulated in juvenile MHCII-/- juveniles. Employing a pre-clinical model of E. coli pneumonia, we identified significant differences in the early cellular and molecular dynamics in the lungs that likely contribute to the elevated susceptibility of neonates to bacterial pneumonia and could represent targets for intervention to improve respiratory outcomes and survivability of neonates.
-
- Immunology and Inflammation
Central tolerance ensures autoreactive T cells are eliminated or diverted to the regulatory T cell lineage, thus preventing autoimmunity. To undergo central tolerance, thymocytes must enter the medulla to test their TCRs for autoreactivity against the diverse self-antigens displayed by antigen presenting cells (APCs). While CCR7 is known to promote thymocyte medullary entry and negative selection, our previous studies implicate CCR4 in these processes, raising the question of whether CCR4 and CCR7 play distinct or redundant roles in central tolerance. Here, synchronized positive selection assays, 2-photon timelapse microscopy, and quantification of TCR-signaled apoptotic thymocytes, demonstrate that CCR4 and CCR7 promote medullary accumulation and central tolerance of distinct post-positive selection thymocyte subsets in mice. CCR4 is upregulated within hours of positive selection signaling and promotes medullary entry and clonal deletion of immature post-positive selection thymocytes. In contrast, CCR7 is expressed several days later and is required for medullary localization and negative selection of mature thymocytes. In addition, CCR4 and CCR7 differentially enforce self-tolerance, with CCR4 enforcing tolerance to self-antigens presented by activated APCs, which express CCR4 ligands. Our findings show that CCR7 expression is not synonymous with medullary localization and support a revised model of central tolerance in which CCR4 and CCR7 promote early and late stages of negative selection, respectively, via interactions with distinct APC subsets.