Placental Malaria: Tackling variants with antibodies
Malaria is a serious, potentially life-threatening disease spread by mosquitoes. Pregnant women are especially at risk, as high densities of the parasite that causes malaria can accumulate in the placenta. This can trigger damaging inflammation in the placenta, which could affect the growth and development of the unborn baby, and even lead to a higher risk of infant death (Walker et al., 2014).
The malaria parasites that infect pregnant women are unique in displaying a protein called VAR2CSA on their surface. When VAR2CSA binds to CSA, a molecule on the surface of placenta cells, it leads to placental malaria. Over successive pregnancies, the body develops immunity against placental malaria by generating antibodies targeting VAR2CSA, and preventing it from attaching to CSA (Salanti et al., 2004). This suggests that VAR2CSA vaccines, which mimic the body’s natural defence mechanisms, may be able to provide some protection against placental malaria.
However, the sequences of the gene that codes for VAR2CSA vary between the different parasite strains (Benavente et al., 2018). Two trial vaccines have so far been developed based on sub-parts of the protein, using different variants of VAR2CSA that included an important CSA-binding domain. And although each vaccine candidate worked well against the variant of the protein used, there was little evidence of protection against other variants (Mordmüller et al., 2019; Sirima et al., 2020). Now, in eLife, Patrick Duffy and colleagues at the US National Institute of Allergy and Infectious Diseases – including Justin Doritchamou as first author – investigated whether an antibody could recognise different versions of the full-length VAR2CSA protein from different parasites (Doritchamou et al., 2022).
Doritchamou et al. first mixed five variants of the VAR2CSA protein (one at a time) with a pooled plasma sample from women who were immune to placental malaria. Each time they mixed a single VAR2CSA variant with the plasma, antibodies that bound to that variant were purified out of the pool and quantified. This revealed that most antibodies had bound to the first two variants, suggesting that antibodies towards the latter variants had already been depleted from the pool because they also recognised the earlier variants.
To confirm that antibodies were cross-protective, the researchers then took the antibodies they had purified using one particular VAR2CSA variant and tested their ability to recognise other variants. This revealed that the antibodies that attached to the first VAR2CSA variant were able to recognise all other tested variants. Cross-recognition was seen using purified proteins or using infected red blood cells expressing the variant.
The fact that naturally acquired antibodies against one version of full-length VAR2CSA also react with other variants implies that exposure to a small number of VAR2CSA variants might be enough to provide protection (Figure 1). This finding differs from the group’s previous results using just domains of VAR2CSA, where antibodies for a specific domain from one variant did not bind to other variants (Doritchamou et al., 2016). This suggests that the important antibody target on the protein may only form when the whole protein folds together. However, VAR2CSA is a large molecule and synthesising the amount of complete protein needed for a vaccine would be challenging, especially if multiple variants are required.
Additionally, naturally occurring antibodies, which lack an attached sugar called fucose, may be more protective than antibodies induced by a placental malaria vaccine, which have this sugar (Larsen et al., 2021). The reasons for this difference are unclear. Perhaps vaccine formulations that better mimic natural antigen presentation, such as providing the full-length protein, would lead to highly active antibodies without fucose, which would be highly desirable.
There is also the question of when is the best time to administer a vaccine. Ideally, immunisation would start in young, adolescent girls, a strategy commonly used for HPV vaccines to prevent cervical cancer. Such a vaccine roll-out would require detailed and ongoing consultation in communities where the vaccine might be used, but saving the lives of young mothers and their babies should be worth every effort.
References
-
VAR2CSA domain-specific analysis of naturally acquired functional antibodies to Plasmodium falciparum placental malariaThe Journal of Infectious Diseases 214:577–586.https://doi.org/10.1093/infdis/jiw197
-
Evidence for the involvement of VAR2CSA in pregnancy-associated malariaThe Journal of Experimental Medicine 200:1197–1203.https://doi.org/10.1084/jem.20041579
Article and author information
Author details
Publication history
Copyright
© 2022, Aitken and Rogerson
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 886
- views
-
- 105
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.
-
- Genetics and Genomics
- Immunology and Inflammation
PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.