CriSNPr: a single interface for the curated and de novo design of gRNAs for CRISPR diagnostics using diverse Cas systems

  1. Asgar H Ansari
  2. Manoj Kumar
  3. Sajal Sarkar
  4. Souvik Maiti
  5. Debojyoti Chakraborty  Is a corresponding author
  1. CSIR Institute of Genomics and Integrative Biology, India
  2. CSIR-Institute of Genomics and Integrative Biology, India

Abstract

CRISPR-based diagnostics (CRISPRDx) have improved clinical decision-making, especially during the COVID-19 pandemic, by detecting nucleic acids and identifying variants. This has been accelerated by the discovery of new and engineered CRISPR effectors, which have expanded the portfolio of diagnostic applications to include a broad range of pathogenic and non-pathogenic conditions. However, each diagnostic CRISPR pipeline necessitates customized detection schemes based on the fundamental principles of the Cas protein used, its guide RNA (gRNA) design parameters, and the assay readout. This is especially relevant for variant detection, a low-cost alternative to sequencing-based approaches for which no in silico pipeline for the ready-to-use design of CRISPR-based diagnostics currently exists. In this manuscript, we fill this lacuna using a unified webserver, CriSNPr (CRISPR-based SNP recognition), which provides the user with the opportunity to de-novo design gRNAs based on six CRISPRDx proteins of choice (Fn/enFnCas9, LwCas13a, LbCas12a, AaCas12b, and Cas14a) and query for ready-to-use oligonucleotide sequences for validation on relevant samples. Furthermore, we provide a database of curated pre-designed gRNAs as well as target/off-target for all human and SARS-CoV-2 variants reported thus far. CriSNPr has been validated on multiple Cas proteins, demonstrating its broad and immediate applicability across multiple detection platforms. CriSNPr can be found at http://crisnpr.igib.res.in/.

Data availability

The current manuscript is a computational study, so no new data has been generated for this manuscript. Experimental validation results have been presented in figures in the manuscript. The source code and related datasets have been indicated in the manuscript and also uploaded here: http://crisnpr.igib.res.in/download. All other validation data have been presented in the main manuscript itself.

The following previously published data sets were used

Article and author information

Author details

  1. Asgar H Ansari

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Manoj Kumar

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0772-1399
  3. Sajal Sarkar

    CSIR Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Souvik Maiti

    Chemical and Systems Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Debojyoti Chakraborty

    CSIR Institute of Genomics and Integrative Biology, New Delhi, India
    For correspondence
    debojyoti.chakraborty@igib.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1460-7594

Funding

CSIR (HCP23)

  • Souvik Maiti
  • Debojyoti Chakraborty

EMBO (GAP252)

  • Debojyoti Chakraborty

Lady Tata Memorial Trust (GAP198)

  • Debojyoti Chakraborty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tony Yuen, Icahn School of Medicine at Mount Sinai, United States

Version history

  1. Preprint posted: February 17, 2022 (view preprint)
  2. Received: February 17, 2022
  3. Accepted: February 7, 2023
  4. Accepted Manuscript published: February 8, 2023 (version 1)
  5. Version of Record published: February 20, 2023 (version 2)

Copyright

© 2023, Ansari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,532
    Page views
  • 227
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asgar H Ansari
  2. Manoj Kumar
  3. Sajal Sarkar
  4. Souvik Maiti
  5. Debojyoti Chakraborty
(2023)
CriSNPr: a single interface for the curated and de novo design of gRNAs for CRISPR diagnostics using diverse Cas systems
eLife 12:e77976.
https://doi.org/10.7554/eLife.77976

Share this article

https://doi.org/10.7554/eLife.77976

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Arthur L Schneider, Rita Martins-Silva ... Nuno L Barbosa-Morais
    Tools and Resources

    We herein introduce voyAGEr, an online graphical interface to explore age-related gene expression alterations in 49 human tissues. voyAGEr offers a visualisation and statistical toolkit for the finding and functional exploration of sex- and tissue-specific transcriptomic changes with age. In its conception, we developed a novel bioinformatics pipeline leveraging RNA sequencing data, from the GTEx project, encompassing more than 900 individuals. voyAGEr reveals transcriptomic signatures of the known asynchronous ageing between tissues, allowing the observation of tissue-specific age periods of major transcriptional changes, associated with alterations in different biological pathways, cellular composition, and disease conditions. Notably, voyAGEr was created to assist researchers with no expertise in bioinformatics, providing a supportive framework for elaborating, testing and refining their hypotheses on the molecular nature of human ageing and its association with pathologies, thereby also aiding in the discovery of novel therapeutic targets. voyAGEr is freely available at https://compbio.imm.medicina.ulisboa.pt/app/voyAGEr.

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.