CriSNPr: a single interface for the curated and de novo design of gRNAs for CRISPR diagnostics using diverse Cas systems

  1. Asgar H Ansari
  2. Manoj Kumar
  3. Sajal Sarkar
  4. Souvik Maiti
  5. Debojyoti Chakraborty  Is a corresponding author
  1. CSIR Institute of Genomics and Integrative Biology, India
  2. CSIR-Institute of Genomics and Integrative Biology, India

Abstract

CRISPR-based diagnostics (CRISPRDx) have improved clinical decision-making, especially during the COVID-19 pandemic, by detecting nucleic acids and identifying variants. This has been accelerated by the discovery of new and engineered CRISPR effectors, which have expanded the portfolio of diagnostic applications to include a broad range of pathogenic and non-pathogenic conditions. However, each diagnostic CRISPR pipeline necessitates customized detection schemes based on the fundamental principles of the Cas protein used, its guide RNA (gRNA) design parameters, and the assay readout. This is especially relevant for variant detection, a low-cost alternative to sequencing-based approaches for which no in silico pipeline for the ready-to-use design of CRISPR-based diagnostics currently exists. In this manuscript, we fill this lacuna using a unified webserver, CriSNPr (CRISPR-based SNP recognition), which provides the user with the opportunity to de-novo design gRNAs based on six CRISPRDx proteins of choice (Fn/enFnCas9, LwCas13a, LbCas12a, AaCas12b, and Cas14a) and query for ready-to-use oligonucleotide sequences for validation on relevant samples. Furthermore, we provide a database of curated pre-designed gRNAs as well as target/off-target for all human and SARS-CoV-2 variants reported thus far. CriSNPr has been validated on multiple Cas proteins, demonstrating its broad and immediate applicability across multiple detection platforms. CriSNPr can be found at http://crisnpr.igib.res.in/.

Data availability

The current manuscript is a computational study, so no new data has been generated for this manuscript. Experimental validation results have been presented in figures in the manuscript. The source code and related datasets have been indicated in the manuscript and also uploaded here: http://crisnpr.igib.res.in/download. All other validation data have been presented in the main manuscript itself.

The following previously published data sets were used

Article and author information

Author details

  1. Asgar H Ansari

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Manoj Kumar

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0772-1399
  3. Sajal Sarkar

    CSIR Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Souvik Maiti

    Chemical and Systems Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Debojyoti Chakraborty

    CSIR Institute of Genomics and Integrative Biology, New Delhi, India
    For correspondence
    debojyoti.chakraborty@igib.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1460-7594

Funding

CSIR (HCP23)

  • Souvik Maiti
  • Debojyoti Chakraborty

EMBO (GAP252)

  • Debojyoti Chakraborty

Lady Tata Memorial Trust (GAP198)

  • Debojyoti Chakraborty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Ansari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,791
    views
  • 259
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asgar H Ansari
  2. Manoj Kumar
  3. Sajal Sarkar
  4. Souvik Maiti
  5. Debojyoti Chakraborty
(2023)
CriSNPr: a single interface for the curated and de novo design of gRNAs for CRISPR diagnostics using diverse Cas systems
eLife 12:e77976.
https://doi.org/10.7554/eLife.77976

Share this article

https://doi.org/10.7554/eLife.77976

Further reading

    1. Computational and Systems Biology
    Liqi Kang, Banghao Wu ... Liang Hong
    Research Article

    Artificial intelligence (AI) models have been used to study the compositional regularities of proteins in nature, enabling it to assist in protein design to improve the efficiency of protein engineering and reduce manufacturing cost. However, in industrial settings, proteins are often required to work in extreme environments where they are relatively scarce or even non-existent in nature. Since such proteins are almost absent in the training datasets, it is uncertain whether AI model possesses the capability of evolving the protein to adapt extreme conditions. Antibodies are crucial components of affinity chromatography, and they are hoped to remain active at the extreme environments where most proteins cannot tolerate. In this study, we applied an advanced large language model (LLM), the Pro-PRIME model, to improve the alkali resistance of a representative antibody, a VHH antibody capable of binding to growth hormone. Through two rounds of design, we ensured that the selected mutant has enhanced functionality, including higher thermal stability, extreme pH resistance, and stronger affinity, thereby validating the generalized capability of the LLM in meeting specific demands. To the best of our knowledge, this is the first LLM-designed protein product, which is successfully applied in mass production.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.