CriSNPr: a single interface for the curated and de novo design of gRNAs for CRISPR diagnostics using diverse Cas systems

  1. Asgar H Ansari
  2. Manoj Kumar
  3. Sajal Sarkar
  4. Souvik Maiti
  5. Debojyoti Chakraborty  Is a corresponding author
  1. CSIR Institute of Genomics and Integrative Biology, India
  2. CSIR-Institute of Genomics and Integrative Biology, India

Abstract

CRISPR-based diagnostics (CRISPRDx) have improved clinical decision-making, especially during the COVID-19 pandemic, by detecting nucleic acids and identifying variants. This has been accelerated by the discovery of new and engineered CRISPR effectors, which have expanded the portfolio of diagnostic applications to include a broad range of pathogenic and non-pathogenic conditions. However, each diagnostic CRISPR pipeline necessitates customized detection schemes based on the fundamental principles of the Cas protein used, its guide RNA (gRNA) design parameters, and the assay readout. This is especially relevant for variant detection, a low-cost alternative to sequencing-based approaches for which no in silico pipeline for the ready-to-use design of CRISPR-based diagnostics currently exists. In this manuscript, we fill this lacuna using a unified webserver, CriSNPr (CRISPR-based SNP recognition), which provides the user with the opportunity to de-novo design gRNAs based on six CRISPRDx proteins of choice (Fn/enFnCas9, LwCas13a, LbCas12a, AaCas12b, and Cas14a) and query for ready-to-use oligonucleotide sequences for validation on relevant samples. Furthermore, we provide a database of curated pre-designed gRNAs as well as target/off-target for all human and SARS-CoV-2 variants reported thus far. CriSNPr has been validated on multiple Cas proteins, demonstrating its broad and immediate applicability across multiple detection platforms. CriSNPr can be found at http://crisnpr.igib.res.in/.

Data availability

The current manuscript is a computational study, so no new data has been generated for this manuscript. Experimental validation results have been presented in figures in the manuscript. The source code and related datasets have been indicated in the manuscript and also uploaded here: http://crisnpr.igib.res.in/download. All other validation data have been presented in the main manuscript itself.

The following previously published data sets were used

Article and author information

Author details

  1. Asgar H Ansari

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Manoj Kumar

    Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0772-1399
  3. Sajal Sarkar

    CSIR Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Souvik Maiti

    Chemical and Systems Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Debojyoti Chakraborty

    CSIR Institute of Genomics and Integrative Biology, New Delhi, India
    For correspondence
    debojyoti.chakraborty@igib.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1460-7594

Funding

CSIR (HCP23)

  • Souvik Maiti
  • Debojyoti Chakraborty

EMBO (GAP252)

  • Debojyoti Chakraborty

Lady Tata Memorial Trust (GAP198)

  • Debojyoti Chakraborty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Ansari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,702
    views
  • 246
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asgar H Ansari
  2. Manoj Kumar
  3. Sajal Sarkar
  4. Souvik Maiti
  5. Debojyoti Chakraborty
(2023)
CriSNPr: a single interface for the curated and de novo design of gRNAs for CRISPR diagnostics using diverse Cas systems
eLife 12:e77976.
https://doi.org/10.7554/eLife.77976

Share this article

https://doi.org/10.7554/eLife.77976

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources Updated

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B-cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution, and dynamics. We present HILARy (high-precision inference of lineages in antibody repertoires), an efficient, fast, and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and dN/dS ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ritwik Maity, Xuepei Zhang ... Javier Sancho
    Research Article

    Antimicrobial resistance is responsible for an alarming number of deaths, estimated at 5 million per year. To combat priority pathogens, like Helicobacter pylori, the development of novel therapies is of utmost importance. Understanding the molecular alterations induced by medications is critical for the design of multi-targeting treatments capable of eradicating the infection and mitigating its pathogenicity. However, the application of bulk omics approaches for unraveling drug molecular mechanisms of action is limited by their inability to discriminate between target-specific modifications and off-target effects. This study introduces a multi-omics method to overcome the existing limitation. For the first time, the Proteome Integral Solubility Alteration (PISA) assay is utilized in bacteria in the PISA-Express format to link proteome solubility with different and potentially immediate responses to drug treatment, enabling us the resolution to understand target-specific modifications and off-target effects. This study introduces a comprehensive method for understanding drug mechanisms and optimizing the development of multi-targeting antimicrobial therapies.